PROYECTO PARA LA ADECUACIÓN Y MEJORA DEL SENDERO RÍO MOLINOS SL-A 148 – BAYÁRCAL

SOLICITANTE: AYUNTAMIENTO DE BAYARCAL

SITUACION: BAYARCAL (ALMERÍA)

ARQUITECTO REDACTOR: JOSÉ ANTONIO SÁNCHEZ HERNÁNDEZ

Adecuación y Mejora del Sendero Río Molinos SL-A 148 – Bayárcal

- 1. MEMORIA
- 2. PRESUPUESTO
- 3. PLIEGO DE CONDICIONES TECNICAS PARTICULARES
- 4. ESTUDIO BASICO DE SEGURIDAD Y SALUD
- 5. PLANOS
- 6. ANEXO DE CALCULO

1. MEMORIA

Contenido

1. MEM	IORIA	∠
1.1	IDENTIFICACIÓN DEL PROYECTO	4
1.2	AGENTES	
1.3	DESCRIPCION DEL PROYECTO	
1.3.1	OBJETO DEL PROYECTO	
1.3.2	JUSTIFICACIÓN DE LA ACTUACIÓN	
1.3.3	SITUACIÓN Y ENTORNO	(
1.3.4	ACCESOS AL AMBITO DE ACTUACION	
1.3.5	,	
1.3.6	INFORMACIÓN URBANÍSTICA	16
1.3.7	MARCO NORMATIVO	16
1.3.8	SEGURIDAD Y SALUD EN EL TRABAJO	18
1.3.9	PLAZO DE EJECUCIÓN	18
1.3.10	PRESUPUESTO DE EJECUCIÓN MATERIAL	18
2. CO	ONCLUSIONES	18

ANEJOS A LA MEMORIA

- ANEJO CALCULO ESTRUCTURAL PASARELA
- ANEJO GESTION DE RESIDUOS

1. MEMORIA

1.1 IDENTIFICACIÓN DEL PROYECTO

Título del proyecto: Adecuación y Mejora del Sendero Río Molinos SL-A 148 – Bayárcal

Objeto del proyecto: El objeto del proyecto es la adecuación y mejora del Sendero Río Molinos (SL-A 148), mediante labores de señalización, limpieza, mejora del firme y refuerzo de elementos de seguridad. La actuación incluye también la instalación de nuevas pasarelas y puntos de apoyo, con el fin de recuperar la funcionalidad del trazado, mejorar su accesibilidad y potenciar su valor turístico y patrimonial.

Situación: Sendero de Los Molinos SL-A-148, Bayárcal, Almería.

1.2 AGENTES

Promotor:

Ayuntamiento de Bayárcal

CIF: P-0402000-D

Plaza Mayor, 1 - 04479 Bayárcal (Almería)

Proyectista:

José Antonio Sánchez Hernández

Arquitecto

CIF/NIF: 34849254E

Colegio: COA Almería - Nº colegiado: 615

Calle José Gaos, nº 25 oficina ID9 - Huércal de Almería (Almería)

Teléfono: 619231541

jasanchez@ectecnicos.com

1.3 DESCRIPCION DEL PROYECTO

1.3.1 **OBJETO DEL PROYECTO**

El presente proyecto se redacta a petición del excelentísimo ayuntamiento de Bayárcal, con objeto detallar las actuaciones necesarias para la adecuación y mejora del Sendero Rio Molinos, SL-A 148, ubicado en el término municipal de Bayárcal, en la Alpujarra almeriense.

El presente proyecto tiene una doble finalidad, a nivel técnico, tiene como objetivo la señalización, adecuación y mejora del Sendero Rio Molinos, con ello se pretende la puesta en valor de esta vía. Incluyendo la construcción de nuevas pasarelas seguras en sustitución de las antiguas estructuras realizadas artesanalmente por los propios vecinos de Bayárcal, que fueron arrasadas por las riadas de 2009. La intervención permitirá recuperar la funcionalidad original del trazado, reforzar la seguridad de los usuarios y preservar el uso tradicional del camino, mejorando la accesibilidad y potenciando su valor turístico y patrimonial.

Desde el punto de vista socioeconómico, se espera que la mejora de esta ruta de senderismo sea un reclamo turístico para este enclave natural. El turismo de senderismo está asociado con un turismo responsable y respetuoso con la naturaleza y el medio ambiente.

En los siguientes apartados de esta memoria se describe la situación actual del sendero, se aporta la información gráfica recopilada durante el estudio de evaluación "in situ" de la zona a adecuar, se aportan los planos de diseño del proyecto, y se detallan los trabajos de obra y mejora a realizar.

1.3.2 JUSTIFICACIÓN DE LA ACTUACIÓN

La presente actuación se justifica por el notable deterioro que presenta actualmente el Sendero SL-A 148 "Río Molinos", en Bayárcal. Desde la destrucción de los antiguos puentes artesanales a causa de las riadas de 2009, no se han restituido pasos seguros sobre el cauce del arroyo, interrumpiendo la continuidad del recorrido. Además, numerosos tramos del camino presentan pérdida del firme y acumulación de material suelto, lo que dificulta el tránsito y compromete la seguridad de los usuarios. Parte del trazado se encuentra invadido por vegetación y maleza, haciendo casi impracticable la senda sin

intervención previa. Los elementos de señalización han desaparecido en algunos puntos, y se ha perdido también parte del vallado con cuerda que asistía a los senderistas en las pendientes más pronunciadas. Todo ello hace imprescindible una intervención integral que recupere las condiciones de uso, accesibilidad y seguridad necesarias para su correcta funcionalidad, revalorizando así un recurso natural y cultural de gran interés local y turístico.

1.3.3 SITUACIÓN Y ENTORNO

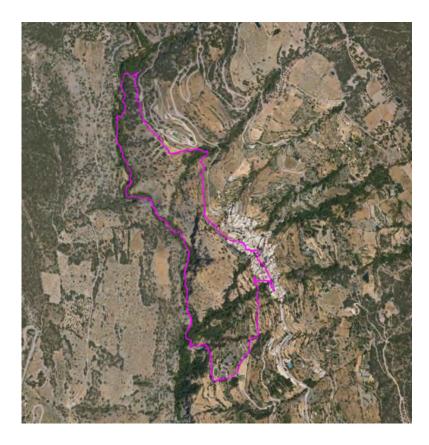
La Senda de los Molinos (SL-A 148) atraviesa el profundo valle de la Ragua, situado en las inmediaciones de Bayárcal. Esta ruta cruza el río, donde se encuentran diversa una cascada y una poza (Poza de los mozicos), y pasa junto a las ruinas del Molino del Sacristán y otros antiguos molinos hidráulicos. El sendero discurre a lo largo de aproximadamente 4,2 km siguiendo la ribera del río de Bayárcal, también conocido como arroyo del Palancón. La ruta transcurre entre zonas agrícolas tradicionales, vegetación de ribera y encontrándonos con antiguos molinos de agua como se ha mencionado anteriormente, hoy en ruinas. El entorno ofrece alto valor paisajístico y ecológico Durante el recorrido, se pueden contemplar las cumbres nevadas de Sierra Nevada, mientras el sendero se encuentra rodeado por bosques de castaños, encinas, pinares y olmos. La senda, señalizada con líneas blancas y verdes, comienza en un mirador equipado con una fuente, ubicado en el centro de Bayárcal, a escasos metros de la Plaza del Ayuntamiento, donde se dispone de un cartel informativo para los visitantes. El Sendero Rio Molinos es un sendero de dificultad media, siendo una ruta circular con un desnivel de subida acumulado de 350m. La duración de la ruta es de unas 2 horas y parte a pocos metros de la plaza del ayuntamiento de Bayárcal, donde se encuentra un cartel informativo del sendero. La ruta transcurre hasta llegar a las últimas huertas de manzanos que rodean las casas de Bayárcal y de ahí continúa por el Camino de los Callejones para adentrarse en el valle de la Ragua, hasta llegar al río Bayárcal (o arroyo Palancón). Aquí se encuentra en una zona de densa vegetación de ribera, con chopos, olmos, cerezos, castaños, moreras de zarza y helechos, y se pueden ver también las ruinas de los molinos hidráulicos. En el tramo del río, el sendero cruza el cauce en varios puntos, en muchos de los cuales los puentes de madera están en mal estado, siendo inutilizables. Al dejar el río para volver al pueblo nos encontramos con la última parte del sendero. Ésta tiene un terreno pedregoso (con riesgo de desprendimiento de cantos) y un fuerte repecho, por lo que puede suponer

un riesgo para los senderistas. Se observan en este tramo los postes de sujeción de un antiguo pasamanos de cuerda que ya no está.

1.3.4 ACCESOS AL AMBITO DE ACTUACION

De acuerdo a la información indicada en el epígrafe anterior, donde se ha indicado las características del trazado del Sendero de los Molinos (SL-A 148), indicar que la accesibilidad para la ejecución de los trabajos es muy limitante.

El acceso a los distintos puntos de actuación a lo largo del sendero presenta graves limitaciones de accesibilidad, ya que la red de caminos existente es estrecha, sin plataforma rodada continua, y en muchos tramos carece de firme estabilizado o de espacio suficiente para la circulación de vehículos. En determinados sectores, el tránsito solo es posible a pie, por sendas tradicionales con fuerte pendiente, suelo irregular y zonas expuestas, lo que imposibilita el uso de maquinaria pesada o vehículos auxiliares convencionales.


Estas condiciones obligan a que todas las tareas previstas deban ser ejecutadas manualmente o mediante el empleo de maquinaria ligera y portátil, acarreada por operarios hasta el lugar de intervención. Asimismo, el acopio, transporte y distribución de materiales debe organizarse mediante medios alternativos, como porteo manual, carretillas o mulas mecánicas, lo que incrementa los tiempos de ejecución y reduce el rendimiento respecto a condiciones de obra estándar.

Dadas estas circunstancias, se ha tenido en cuenta en el dimensionamiento técnico y económico del proyecto, incorporando los condicionantes de acceso como factor determinante en la justificación de precios unitarios y en la planificación de los medios y recursos a emplear.

1.3.5 DESCRIPCIÓN DE LAS OBRAS

La obra objeto del presente proyecto transcurrirá por los caminos existentes. No se modifica uso del suelo, solamente se señaliza, adecúa y mejora la ruta del Sendero de los Molinos. A continuación, en la imagen se muestra la ruta del sendero objeto del presente proyecto.

La actuación se prevé prácticamente sobre la totalidad de la ruta, no interviniéndose en el tramo que transcurre por las calles del municipio.

En este sentido, las actuaciones más específicas se han desglosado del siguiente modo:

Actuación 1. Acondicionamiento del tramo inicial del sendero

En el sector de inicio del sendero se detecta un firme inestable, compuesto mayoritariamente por piedra de pizarra suelta, lo que genera un riesgo potencial de caídas. Además, la traza se encuentra parcialmente invadida por vegetación espontánea y arbustiva.

Se proyectan las siguientes labores:

- 1. Desbroce mecánico y manual de vegetación de borde y zona de tránsito.
- 2. Poda selectiva de especies arbóreas que interfieren en el paso.
- Estabilización del firme, mediante retirada parcial del material suelto y conformación del camino.

La intervención se divide en dos zonas diferenciadas en función del acceso y medios posibles:

Tramo 1: Aproximadamente 145 metros lineales de actuación manual, por limitación de acceso mecánico.

Tramo 2: Aproximadamente 270 metros lineales ejecutables con maquinaria ligera (minicargadora o retroexcavadora de cadenas).

La actuación 1, está prevista en la zona localizada al inicio del sendero tras salir del núcleo urbano y adentrase en el entorno rural (Ver imagen siguiente, desde el punto A al B).

Igualmente, en las imágenes siguientes podemos observar el estado del camino objeto de esta actuación.

Actuación 2. Adecuación de márgenes fluviales y zonas de paso de puentes

Se contempla la preparación del entorno inmediato a los puntos de cruce del cauce fluvial, donde posteriormente se realizará la instalación de puentes de madera a modo de pasarelas peatonales. Con carácter previo, se proyectan las siguientes operaciones:

- Poda de vegetación arbórea que impide el acceso o visibilidad.
- Desbroce y limpieza de márgenes.
- Retirada de residuos vegetales y acumulaciones de sedimento.

Estas mismas operaciones se realizarán en dos zonas adicionales de valor patrimonial y paisajístico:

- Molino del Sacristán
- Poza de los Mocicos

Ambas áreas, si bien no contemplan instalación de estructuras, requieren mejora del entorno inmediato para su puesta en valor. El área a adecuar en cada uno de los casos es variable de acuerdo con la disposición de los puentes.

Las ilustraciones de siguientes muestran la zona adecuar del Molino de Sacristán.

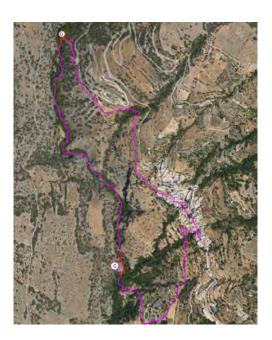
En referencia a la Poza de los Mocicos, donde es habitual que los senderistas realicen una parada para tomar un baño o bien disfrutar de este punto emblemático en el sendero. Los trabajos de adecuación del entorno con las labores mencionadas anteriormente van dirigidas a dar visibilidad a este punto emblemático del Sendero de los Molinos, que debido a la falta de mantenimiento del sendero pasa prácticamente desapercibido. La ilustración siguiente muestra la Poza de los Mocicos a la que se hace referencia.

Respecto a las zonas a adecuar para la instalación de los puentes, el entorno inmediato se encuentra tal y como refleja las siguientes imágenes, siendo el estado de los diferentes puntos considerados para los puentes semejante.

Actuación 3. Reparación de sistema de seguridad (cable de vida)

En un tramo estrecho del sendero, donde se presentan condiciones desfavorables para el tránsito seguro, existe actualmente un cable de vida como elemento de ayuda para pasar por este tramo y evitar caídas. Este sistema se encuentra anclado a la piedra, estando actualmente parcialmente suelto, suponiendo un importante riesgo para los transeúntes. La actuación consiste en:

- Inspección del sistema existente.
- Sustitución de anclajes y cable, asegurando su funcionalidad conforme a criterios de seguridad.


En la imagen siguiente se muestra el cable de vida a reparar.

Actuación 4. Mejora de sistemas de ayuda al ascenso en tramos con fuerte pendiente

Se identifican dos tramos diferenciados del sendero con pendientes acusadas, donde existen actualmente sistemas de ayuda al tránsito peatonal compuestos por postes de madera y cuerda, cuya finalidad es facilitar el ascenso y mejorar la seguridad del usuario. A continuación, se muestra el emplazamiento de estos dos tramos, en adelante Tramo C y Tramo D.

• Tramo C – Reparación y refuerzo del sistema existente

El tramo C presenta una cuerda de ayuda al ascenso instalada entre postes de madera, aunque se encuentra deteriorada, floja y con algunos anclajes inestables o sueltos.

Se proyecta:

- Retirada y sustitución de la cuerda actual por cuerda resistente al desgaste y a la intemperie.
- Revisión y refuerzo de anclajes de los postes existentes.
- Reposición o instalación de nuevos postes donde se observe separación excesiva o deterioro estructural, manteniendo un espaciado funcional (entre 1,5 y 2 m según trazado).
- Fijación mediante anclaje en profundidad o cimentación puntual si el terreno lo requiere.

La longitud de este tramo es de 132 metros.

A continuación, se reflejan unas ilustraciones de este tramo C.

• Tramo D – Instalación completa del sistema de ayuda

Este tramo apenas cuenta con elementos instalados. La cuerda es inexistente o discontinua, y los postes son escasos.

Se proyecta la instalación completa del sistema de ayuda al ascenso, consistente en:

Suministro e instalación de postes de madera tratada en autoclave clase IV y taladrado para permitir la instalación de la cuerda con objeto de pasarla de un poste a otro, creando una valla de poste y cuerda.

La fijación de los postes deberá quedar totalmente segura con anclaje mediante hormigón o clavado profundo, dependiendo de las características del terreno.

Asimismo, los trabajos deben adaptarse al trazado existente, asegurando que la instalación no afecta a elementos singulares del entorno ni genera impacto visual excesivo.

La longitud de este tramo es de 112 metros lineales. A continuación, se reflejan unas ilustraciones de este tramo D.

Actuación 5. Instalación de pasarelas de madera para el cruce de cauce

El proyecto contempla la implantación de nuevas estructuras tipo pasarela de madera, destinadas a permitir el cruce seguro del cauce fluvial en distintos puntos del trazado del sendero, en zonas donde actualmente no existen pasos habilitados o los pasos tradicionales son inseguros o inexistentes.

Estas pasarelas darán continuidad al recorrido, mejorando la accesibilidad, seguridad y funcionalidad del sendero, sin alterar su trazado ni el carácter natural del entorno.

Se proyecta la instalación de tres pasarelas de madera. La siguiente tabla, refleja las coordenadas UTM de cada uno de los puentes, así como, la longitud de estos.

Nº Pasarela	Longitud (m)	Coordenadas UTM		
	-	X	Y	
1	4,60	500054,53	4098162,60	
2	6,00	500072,61	4098227,68	
3	7,00	499876,86	4098493,46	

Respecto a la ejecución en sí, se resumen los trabajos para esta actuación en los siguientes:

- Desbroce y limpieza del área de intervención, incluyendo retirada de vegetación, restos orgánicos y materiales inadecuados para garantizar la correcta ejecución de la obra.
- Excavación y cajeado de apoyos en ambas márgenes del cauce, con la profundidad y dimensiones necesarias para alojar las cimentaciones de la pasarela.
- Ejecución de muros de apoyo en mampostería a una cara vista, empleando piedra existente en el entorno, recibida con mortero de cemento y garantizando la estabilidad estructural. Alternativamente, en ausencia de material pétreo adecuado en la zona, se procederá a la ejecución de muros de bloque de hormigón, los cuales serán posteriormente revestidos con lajas de piedra por ambas caras, asegurando la integración estética en el entorno.
- Montaje de la estructura principal de la pasarela peatonal de madera, y posteriormente instalación de la tarima de madera. La pasarela de madera estará constituida íntegramente por madera tratada en autoclave clase IV, siendo los elementos de unión de las maderas serán de acero galvanizado.
- Colocación de barandillas de madera a ambos lados de la pasarela, ancladas a la estructura y ejecutadas conforme a los planos.

1.3.6 INFORMACIÓN URBANÍSTICA

La obra del objeto del presente proyecto discurre por el trazado del sendero actual, no contemplándose cambios de suelo.

1.3.7 MARCO NORMATIVO

Accesibilidad

 Decreto 293/2009 por el que se aprueba el reglamento que regula las normas para la accesibilidad en las infraestructuras, el urbanismo, la edificación y el transporte de Andalucía.

Urbanismo

- PGOU del Excmo. Ayuntamiento de Bayárcal.
- Ley 7/2002, de 17 de diciembre, de Ordenación Urbanística de Andalucía.
- Ley 2/2012, de 30 de enero, de modificación de la Ley 7/2002, de 17 de diciembre,
 de Ordenación Urbanística de Andalucía

Seguridad y Salud

- Real Decreto 1627/1.997 de 24 de octubre, por el que se establecen disposiciones mínimas de seguridad y salud en las obras de construcción, entre otras la obligatoriedad de la elaboración de un Estudio o Estudio Básico de Seguridad y Salud en los proyectos de obras, modificado mediante Real Decreto 604/2006 de 19 de mayo de 2006.
- Ley 31/1995 de prevención de riesgos laborales y reglamentos de aplicación

Residuos de la construcción y calidad ambiental

- Residuos en construcción y demolición. RD: 105/2008 de 1 de febrero del ministerio de la presidencia BOE: 13-feb-2008
- Lista europea de residuos. Orden MAM 304/2002, de 8 de febrero, del ministerio de medio ambiente BOE: 19-feb-2002
- Corrección errores: lista europea de residuos. corrección errores orden MAM 304/2002, de 8 de febrero, del ministerio de medio ambiente. BOE: 12-mar-2002
- Ley de residuos. Ley 10/1998 de 21 de abril, de la jefatura de estado. BOE: 22-abr-1998.
- Ley 7/2007, de 9 de julio, de Gestión Integrada de la Calidad Ambiental (GICA)

Senderos

- Manual de señalización de senderos de la Federación Andaluza de Montañismo FAM.
- Manual de senderos de la Federación Española de Deportes de Montaña y Escalada - FEDME.

1.3.8. SEGURIDAD Y SALUD EN EL TRABAJO

Las obras objeto del presente proyecto quedan incluidas dentro de las que es obligada la redacción de un Estudio Básico de Seguridad y Salud, todo ello acorde con el Real Decreto 1627/1997, de 24 de octubre, que se incluye en el presente proyecto. Teniendo un importe de TRESCIENTOS SETENTA Y CINCO EUROS CON CUARENTA Y NUEVE CENTIMOS (375,49 €)

El Estudio Básico de Seguridad y Salud adjunto establece durante el periodo de desarrollo de las obras, las previsiones respecto a prevención de riesgos de accidentes y enfermedades profesionales, así como los derivados de los trabajos de reparación, conservación y mantenimiento, y las instalaciones preceptivas de higiene y bienestar.

1.3.9. PLAZO DE EJECUCIÓN

El plazo estimado de ejecución de las obras es de TRES MESES contados a partir de la firma del acta de replanteo.

1.3.10. PRESUPUESTO DE EJECUCIÓN MATERIAL

El Presupuesto de Ejecución Material asciende a **SETENTA MIL NOVECIENTOS TREINTA Y NUEVE EUROS CON TREINTA Y NUEVE CÉNTIMOS (70.939,93** €).

El Presupuesto de ejecución por contrata (IVA incluido) asciende a CIENTO DOS MIL CIENTO CUARENTA Y SEIS EUROS con CUARENTA Y UN CÉNTIMO. (102.146,41 €). CONCLUSIONES

2. CONCLUSIONES

Todo lo redactado anteriormente junto a los planos y documentos anejos que se acompañan se considera suficiente para su interpretación y ejecución del proyecto para la adecuación y mejora del sendero que se pretende realizar, por parte de los Organismos

Adecuación y Mejora del Sendero Río Molinos SL-A 148 – Bayárcal

Oficiales y estando dispuestos a aclararlos o complementarlos, si la Administración lo estimara conveniente.

Queda el Técnico autor de este proyecto a su entera disposición para cualquier aclaración o duda que pudiese plantearse en este trabajo.

Almería, 15 de septiembre de 2025

Fdo. José Antonio Sánchez Hernández COA Almería - Nº colegiado: 615

ANEJOS A LA MEMORIA

- ANEJO CALCULO ESTRUCTURAL PASARELA
- ANEJO GESTION DE RESIDUOS

ESTUDIO DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN

1. CONTENI DO DEL DOCUMENTO

- 2. AGENTES INTERVINIENTES
 - 2.1. I dentificación
 - 2.1.1. Productor de residuos (promotor)
 - 2.1.2. Poseedor de residuos (constructor)
 - 2.1.3. Gestor de residuos
 - 2.2. Obligaciones
 - 2.2.1. Productor de residuos (promotor)
 - 2.2.2. Poseedor de residuos (constructor)
 - 2.2.3. Gestor de residuos
- 3. NORMATIVA Y LEGISLACIÓN APLICABLE
- 4. I DENTIFICACIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN GENERADOS EN LA OBRA.
- 5. ESTIMACIÓN DE LA CANTIDAD DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN QUE SE GENERARÁN EN LA OBRA
- 6. MEDIDAS PARA LA PLANIFICACIÓN Y OPTIMIZACIÓN DE LA GESTIÓN DE LOS RESIDUOS RESULTANTES DE LA CONSTRUCCIÓN Y DEMOLICIÓN DE LA OBRA OBJETO DEL PROYECTO
- 7. OPERACIONES DE REUTILIZACIÓN, VALORIZACIÓN O ELIMINACIÓN A QUE SE DESTINARÁN LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN QUE SE GENEREN EN LA OBRA
- 8. MEDIDAS PARA LA SEPARACIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN EN OBRA
- 9. PRESCRIPCIONES EN RELACIÓN CON EL ALMACENAMIENTO, MANEJO, SEPARACIÓN Y OTRAS OPERACIONES DE GESTIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN
- 10. VALORACIÓN DEL COSTE PREVISTO DE LA GESTIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN.
- 11. DETERMINACIÓN DEL IMPORTE DE LA FIANZA
- 12. PLANOS DE LAS INSTALACIONES PREVISTAS PARA EL ALMACENAMIENTO, MANEJO, SEPARACIÓN Y OTRAS OPERACIONES DE GESTIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN
- 13. DOCUMENTOS ADJUNTOS AL ESTUDI O DE GESTI ÓN DE RESI DUOS DE CONSTRUCCI ÓN Y DEMOLICI ÓN

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

1. CONTENI DO DEL DOCUMENTO

En cumplimiento del "Real Decreto 105/2008. Regulación de la producción y gestión de los residuos de construcción y demolición", el presente estudio desarrolla los puntos siguientes:

- Agentes intervinientes en la Gestión de RCD.
- Normativa y legislación aplicable.
- Identificación de los residuos de construcción y demolición generados en la obra, codificados según la "Decisión 2014/955/UE. Lista europea de residuos".
- Estimación de la cantidad generada en volumen y peso.
- Medidas para la prevención de los residuos en la obra.
- Operaciones de reutilización, valorización o eliminación a que se destinarán los residuos.
- Medidas para la separación de los residuos en obra.
- Prescripciones en relación con el almacenamiento, manejo, separación y otras operaciones de gestión de los residuos.
- Valoración del coste previsto de la gestión de RCD.

2. AGENTES INTERVINIENTES

2.1. I dentificación

El presente estudio corresponde al proyecto, situado en .

Los agentes principales que intervienen en la ejecución de la obra son:

Promotor	Ayuntamiento de Bayárcal
Proyectista	Jose Antonio Sánchez Hernández
Director de Obra	Jose Antonio Sánchez Hernández
Director de Ejecución	A designar por el promotor

Se ha estimado en el presupuesto del proyecto, un coste de ejecución material (Presupuesto de ejecución material) de 70.939,17 €.

2.1.1. Productor de residuos (promotor)

Se identifica con el titular del bien inmueble en quien reside la decisión última de construir o demoler. Se pueden presentar tres casos:

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

- 1. La persona física o jurídica titular de la licencia urbanística en una obra de construcción o demolición; en aquellas obras que no precisen de licencia urbanística, tendrá la consideración de productor del residuo la persona física o jurídica titular del bien inmueble objeto de una obra de construcción o demolición.
- 2. La persona física o jurídica que efectúe operaciones de tratamiento, de mezcla o de otro tipo, que ocasionen un cambio de naturaleza o de composición de los residuos.
- 3. El importador o adquirente en cualquier Estado miembro de la Unión Europea de residuos de construcción y demolición.

En el presente estudio, se identifica como el productor de los residuos:

2.1.2. Poseedor de residuos (constructor)

En la presente fase del proyecto no se ha determinado el agente que actuará como Poseedor de los Residuos, siendo responsabilidad del Productor de los residuos (promotor) su designación antes del comienzo de las obras

2.1.3. Gestor de residuos

Es la persona física o jurídica, o entidad pública o privada, que realice cualquiera de las operaciones que componen la recogida, el almacenamiento, el transporte, la valorización y la eliminación de los residuos, incluida la vigilancia de estas operaciones y la de los vertederos, así como su restauración o gestión ambiental de los residuos, con independencia de ostentar la condición de productor de los mismos. Éste será designado por el Productor de los residuos (promotor) con anterioridad al comienzo de las obras.

2.2. Obligaciones

2.2.1. Productor de residuos (promotor)

El productor inicial de residuos está obligado a asegurar el tratamiento adecuado de sus residuos, de conformidad con los principios establecidos en los artículos 7 y 8. de la Ley 7/2022. Para ello, dispondrá de las siguientes opciones:

- a) Realizar el tratamiento de los residuos por sí mismo, siempre que disponga de la correspondiente autorización para llevar a cabo la operación de tratamiento.
- b) Encargar el tratamiento de sus residuos a un negociante registrado o a un gestor de residuos autorizado que realice operaciones de tratamiento.
- c) Entregar los residuos a una entidad pública o privada de recogida de residuos, incluidas las entidades de economía social, para su tratamiento, siempre que estén registradas conforme a lo establecido en esta ley.

Dichas obligaciones deberán acreditarse documentalmente.

Debe incluir en el proyecto de ejecución de la obra un estudio de gestión de residuos de construcción y demolición, que contendrá como mínimo:

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

- 1. Una estimación de la cantidad, expresada en toneladas y en metros cúbicos, de los residuos de construcción y demolición que se generarán en la obra, codificados con arreglo a la "Decisión 2014/955/UE. Lista europea de residuos".
- 2. Las medidas para la planificación y optimización de la gestión de los residuos generados en la obra objeto del proyecto.
- 3. Las operaciones de reutilización, valorización o eliminación a que se destinarán los residuos que se generarán en la obra.
- 4. Las medidas para la separación de los residuos en obra por parte del poseedor de los residuos.
- 5. Los planos de las instalaciones previstas para el almacenamiento, manejo, separación y, en su caso, otras operaciones de gestión de los residuos de construcción y demolición dentro de la obra. Posteriormente, dichos planos podrán ser objeto de adaptación a las características particulares de la obra y sus sistemas de ejecución, previo acuerdo de la dirección facultativa de la obra.
- 6. Las prescripciones del pliego de prescripciones técnicas particulares del proyecto, en relación con el almacenamiento, manejo, separación y, en su caso, otras operaciones de gestión de los residuos de construcción y demolición dentro de la obra.
- 7. Una valoración del coste previsto de la gestión de los residuos de construcción y demolición, que formará parte del presupuesto del proyecto en capítulo independiente.

Está obligado a disponer de la documentación que acredite que los residuos de construcción y demolición realmente producidos en sus obras han sido gestionados, en su caso, en obra o entregados a una instalación de valorización o de eliminación para su tratamiento por gestor de residuos autorizado, en los términos recogidos en el "Real Decreto 105/2008. Regulación de la producción y gestión de los residuos de construcción y demolición" y, en particular, en el presente estudio o en sus modificaciones. La documentación correspondiente a cada año natural deberá mantenerse durante los cinco años siguientes.

Asimismo, está obligado a suscribir un seguro u otra garantía financiera que cubra las responsabilidades a que puedan dar lugar sus actividades atendiendo a sus características, peligrosidad y potencial de riesgo, debiendo cumplir con lo previsto en el artículo 23.5.c. de la Ley 7/2022. Quedan exentos de esta obligación los productores de residuos peligrosos que generen menos de 10 toneladas al año.

En obras de demolición, rehabilitación, reparación o reforma, deberá preparar un inventario de los residuos peligrosos que se generarán, que deberá incluirse en el estudio de gestión de RCD, así como prever su retirada selectiva, con el fin de evitar la mezcla entre ellos o con otros residuos no peligrosos, y asegurar su envío a gestores autorizados de residuos peligrosos.

En las obras de demolición, deberán retirarse los residuos, prohibiendo su mezcla con otros residuos, y manejarse de manera segura las sustancias peligrosas, en particular, el amianto.

La demolición se llevará a cabo preferiblemente de forma selectiva, garantizando la retirada de, al menos, las siguientes fracciones: madera, fracciones de minerales (hormigón, ladrillos, azulejos, cerámica y piedra), metales, vidrio, plástico y yeso. Aquellos elementos susceptibles de ser reutilizados tales como tejas, sanitarios o elementos estructurales, se clasificarán de forma preferente en el lugar de generación de los residuos y sin perjuicio del resto de residuos que ya tienen establecida una recogida separada obligatoria.

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

En su caso, se dispondrá de libros digitales de materiales empleados en las nuevas obras de construcción, de conformidad con lo que se establezca a nivel de la Unión Europea en el ámbito de la economía circular. Asimismo, se establecerán requisitos de ecodiseño para los proyectos de construcción y edificación.

En los casos de obras sometidas a licencia urbanística, el poseedor de residuos, queda obligado a constituir una fianza o garantía financiera equivalente que asegure el cumplimiento de los requisitos establecidos en dicha licencia en relación con los residuos de construcción y demolición de la obra, en los términos previstos en la legislación de las comunidades autónomas correspondientes.

La responsabilidad del productor inicial o poseedor del residuo no concluirá hasta que quede debidamente documentado el tratamiento completo, a través de los correspondientes documentos de traslado de residuos, y cuando sea necesario, mediante un certificado o declaración responsable de la instalación de tratamiento final, los cuales podrán ser solicitados por el productor inicial o poseedor

2.2.2. Poseedor de residuos (constructor)

La persona física o jurídica que ejecute la obra - el constructor -, además de las prescripciones previstas en la normativa aplicable, está obligado a presentar al promotor de la misma un plan que refleje cómo llevará a cabo las obligaciones que le incumban en relación a los residuos de construcción y demolición que se vayan a producir en la obra.

El plan presentado y aceptado por el promotor, una vez aprobado por la dirección facultativa, pasará a formar parte de los documentos contractuales de la obra.

El poseedor de residuos de construcción y demolición, cuando no proceda a gestionarlos por sí mismo, y sin perjuicio de los requerimientos del proyecto aprobado, estará obligado a entregarlos a un gestor de residuos o a participar en un acuerdo voluntario o convenio de colaboración para su gestión. Los residuos de construcción y demolición se destinarán preferentemente, y por este orden, a operaciones de reutilización, reciclado o a otras formas de valorización.

La entrega de los residuos de construcción y demolición a un gestor por parte del poseedor habrá de constar en documento fehaciente, en el que figure, al menos, la identificación del poseedor y del productor, la obra de procedencia y, en su caso, el número de licencia de la obra, la cantidad expresada en toneladas o en metros cúbicos, o en ambas unidades cuando sea posible, el tipo de residuos entregados, codificados con arreglo a la "Decisión 2014/955/UE. Lista europea de residuos", y la identificación del gestor de las operaciones de destino.

Cuando el gestor al que el poseedor entregue los residuos de construcción y demolición efectúe únicamente operaciones de recogida, almacenamiento, transferencia o transporte, en el documento de entrega deberá figurar también el gestor de valorización o de eliminación ulterior al que se destinarán los residuos.

En todo caso, la responsabilidad administrativa en relación con la cesión de los residuos de construcción y demolición por parte de los poseedores a los gestores se regirá por lo establecido en la legislación vigente en materia de residuos.

Mientras se encuentren en su poder, el poseedor de los residuos estará obligado a mantenerlos en condiciones adecuadas de higiene y seguridad, así como a evitar la mezcla de fracciones ya seleccionadas que impida o dificulte su posterior valorización o eliminación.

La separación en fracciones se llevará a cabo preferentemente por el poseedor de los residuos dentro de la obra en que se produzcan.

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

Cuando por falta de espacio físico en la obra no resulte técnicamente viable efectuar dicha separación en origen, el poseedor podrá encomendar la separación de fracciones a un gestor de residuos en una instalación de tratamiento de residuos de construcción y demolición externa a la obra. En este último caso, el poseedor deberá obtener del gestor de la instalación documentación acreditativa de que éste ha cumplido, en su nombre, la obligación recogida en el presente apartado.

El órgano competente en materia medioambiental de la comunidad autónoma donde se ubique la obra, de forma excepcional, y siempre que la separación de los residuos no haya sido especificada y presupuestada en el proyecto de obra, podrá eximir al poseedor de los residuos de construcción y demolición de la obligación de separación de alguna o de todas las anteriores fracciones.

El poseedor de los residuos de construcción y demolición estará obligado a sufragar los correspondientes costes de gestión y a entregar al productor los certificados y la documentación acreditativa de la gestión de los residuos, así como a mantener la documentación correspondiente a cada año natural durante los cinco años siguientes.

2.2.3. Gestor de residuos

Además de las recogidas en la legislación específica sobre residuos, el gestor de residuos de construcción y demolición cumplirá con las siguientes obligaciones:

- 1. En el supuesto de actividades de gestión sometidas a autorización por la legislación de residuos, llevar un registro en el que, como mínimo, figure la cantidad de residuos gestionados, expresada en toneladas y en metros cúbicos, el tipo de residuos, codificados con arreglo a la "Decisión 2014/955/UE. Lista europea de residuos", la identificación del productor, del poseedor y de la obra de donde proceden, o del gestor, cuando procedan de otra operación anterior de gestión, el método de gestión aplicado, así como las cantidades, en toneladas y en metros cúbicos, y destinos de los productos y residuos resultantes de la actividad.
- 2. Poner a disposición de las administraciones públicas competentes, a petición de las mismas, la información contenida en el registro mencionado en el punto anterior. La información referida a cada año natural deberá mantenerse durante los cinco años siguientes.
- 3. Extender al poseedor o al gestor que le entregue residuos de construcción y demolición, los certificados acreditativos de la gestión de los residuos recibidos, especificando el productor y, en su caso, el número de licencia de la obra de procedencia. Cuando se trate de un gestor que lleve a cabo una operación exclusivamente de recogida, almacenamiento, transferencia o transporte, deberá además transmitir al poseedor o al gestor que le entregó los residuos, los certificados de la operación de valorización o de eliminación subsiguiente a que fueron destinados los residuos.
- 4. En el supuesto de que carezca de autorización para gestionar residuos peligrosos, deberá disponer de un procedimiento de admisión de residuos en la instalación que asegure que, previamente al proceso de tratamiento, se detectarán y se separarán, almacenarán adecuadamente y derivarán a gestores autorizados de residuos peligrosos aquellos que tengan este carácter y puedan llegar a la instalación mezclados con residuos no peligrosos de construcción y demolición. Esta obligación se entenderá sin perjuicio de las responsabilidades en que pueda incurrir el productor, el poseedor o, en su caso, el gestor precedente que haya enviado dichos residuos a la instalación.

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

3. NORMATIVA Y LEGISLACIÓN APLICABLE

Para la elaboración del presente estudio se ha considerado la normativa siguiente:

- Artículo 45 de la Constitución Española.

G GESTIÓN DE RESIDUOS

Real Decreto sobre la prevención y reducción de la contaminación del medio ambiente producida por el amianto

Real Decreto 108/1991, de 1 de febrero, del Ministerio de Relaciones con las Cortes y de la Secretaría del Gobierno.

B.O.E.: 6 de febrero de 1991

Regulación de la producción y gestión de los residuos de construcción y demolición

Real Decreto 105/2008, de 1 de febrero, del Ministerio de la Presidencia.

B.O.E.: 13 de febrero de 2008

Plan estatal marco de gestión de residuos (PEMAR) 2016-2022

Resolución de 16 de noviembre de 2015, de la Dirección General de Calidad y Evaluación Ambiental y Medio Natural, por la que se publica el Acuerdo del Consejo de Ministros de 6 de noviembre de 2015.

B.O.E.: 12 de diciembre de 2015

Normas generales de valorización de materiales naturales excavados para su utilización en operaciones de relleno y obras distintas a aquellas en las que se generaron

Orden APM/1007/2017, de 10 de octubre, del Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente.

B.O.E.: 21 de octubre de 2017

Real Decreto por el que se regula la eliminación de residuos mediante depósito en vertedero

Real Decreto 646/2020, de 7 de julio, del Ministerio para la Transición Ecológica y el Reto Demográfico.

B.O.E.: 8 de julio de 2020

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

Ley de residuos y suelos contaminados para una economía circular

Ley 7/2022, de 8 de abril, de la Jefatura del Estado.

B.O.E.: 9 de abril de 2022

Completada por:

Criterios para determinar cuándo los residuos termoplásticos sometidos a tratamientos mecánicos y destinados a la fabricación de productos plásticos dejan de ser residuo con arreglo a la Ley 7/2022, de 8 de abril, de residuos y suelos contaminados para una economía circular

Orden TED/646/2023, de 9 de junio, del Ministerio para la Transición Ecológica y el Reto Demográfico.

B.O.E.: 22 de junio de 2023

Real Decreto de envases y residuos de envases

Real Decreto 1055/2022, de 27 de diciembre, del Ministerio para la Transición Ecológica y el Reto Demográfico.

B.O.E.: 28 de diciembre de 2022

Ley de gestión integrada de la calidad ambiental

Ley 7/2007 de la Presidencia de la Junta de Andalucía.

B.O.J.A.: 20 de julio de 2007 B.O.E.: 9 de agosto de 2007

Texto consolidado. Última modificación: 12 de enero de 2016

Modificada por:

Ley de impulso para la sostenibilidad del territorio de Andalucía

Ley 7/2021, de 1 de diciembre, de la Presidencia de la Junta de Andalucía.

B.O.J.A.: 3 de diciembre de 2021 B.O.E.: 20 de diciembre de 2021

Reglamento de Residuos de Andalucía

Decreto 73/2012, de 20 de marzo, de la Consejería de Medio Ambiente de la Junta de Andalucía.

B.O.J.A.: 26 de abril de 2012

4. I DENTIFICACIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN GENERADOS EN LA OBRA.

Todos los posibles residuos de construcción y demolición generados en la obra, se han codificado atendiendo a la legislación vigente en materia de gestión de residuos, "Decisión 2014/955/UE. Lista europea de residuos", dando lugar a los siguientes grupos:

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

RCD de Nivel I: Tierras y materiales pétreos, no contaminados, procedentes de obras de excavación

Como excepción, no tienen la condición legal de residuos:

Las tierras y piedras no contaminadas por sustancias peligrosas, reutilizadas en la misma obra, en una obra distinta o en una actividad de restauración, acondicionamiento o relleno, siempre y cuando pueda acreditarse de forma fehaciente su destino a reutilización.

RCD de Nivel II: Residuos generados principalmente en las actividades propias del sector de la construcción, de la demolición, de la reparación domiciliaria y de la implantación de servicios.

Se ha establecido una clasificación de RCD generados, según los tipos de materiales de los que están compuestos:

Material según "Decisión 2014/955/UE. Lista europea de residuos"
RCD de Nivel I
1 Tierras y pétreos de la excavación
RCD de Nivel II
RCD de naturaleza no pétrea
1 Asfalto
2 Madera
3 Metales (incluidas sus aleaciones)
4 Papel y cartón
5 Plástico
6 Vidrio
7 Yeso
8 Basuras
RCD de naturaleza pétrea
1 Arena, grava y otros áridos
2 Hormigón
3 Ladrillos, tejas y materiales cerámicos
4 Piedra
RCD potencialmente peligrosos
1 Otros

5. ESTIMACIÓN DE LA CANTIDAD DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN QUE SE GENERARÁN EN LA OBRA

Se ha estimado la cantidad de residuos generados en la obra, a partir de las mediciones del proyecto, en función del peso de materiales integrantes en los rendimientos de los correspondientes precios descompuestos de cada unidad de obra, determinando el peso de los restos de los materiales sobrantes (mermas, roturas, despuntes, etc) y el del embalaje de los productos suministrados.

El volumen de excavación de las tierras y de los materiales pétreos no utilizados en la obra, se ha calculado en función de las dimensiones del proyecto, afectado por un coeficiente de esponjamiento según la clase de terreno.

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

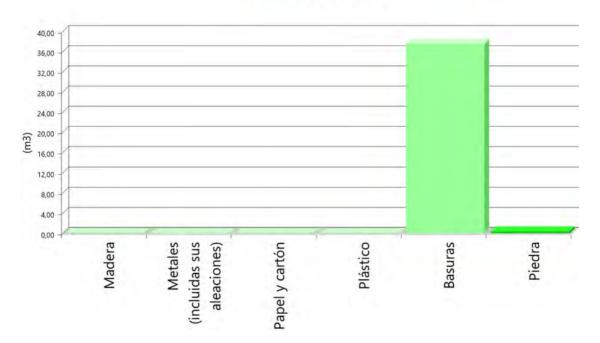
A partir del peso del residuo, se ha estimado su volumen mediante una densidad aparente definida por el cociente entre el peso del residuo y el volumen que ocupa una vez depositado en el contenedor.

Los resultados se resumen en la siguiente tabla:

Material según "Decisión 2014/955/UE. Lista europea de residuos"	Código LER	Densidad aparente (t/m³)	Peso (t)	Volumen (m³)
RCD de Nivel I				
1 Tierras y pétreos de la excavación				
Tierra y piedras distintas de las especificadas en el código 17 05 03.	17 05 04	0,95	322,738	339,367
RCD de Nivel II				
RCD de naturaleza no pétrea				
1 Madera				
Madera.	17 02 01	1,10	0,088	0,080
2 Metales (incluidas sus aleaciones)				
Hierro y acero.	17 04 05	2,10	0,002	0,001
Cables distintos de los especificados en el código 17 04 10.	17 04 11	1,50	0,000	0,000
3 Papel y cartón				
Envases de papel y cartón.	15 01 01	0,75	0,011	0,015
4 Plástico				
Plástico.	17 02 03	0,60	0,005	0,008
5 Basuras				
Residuos biodegradables.	20 02 01	1,50	37,743	25,162
Residuos de la limpieza viaria.	20 03 03	1,50	18,546	12,364
RCD de naturaleza pétrea				
1 Piedra				
Residuos del corte y serrado de piedra distintos de los mencionados en el código 01 04 07.	01 04 13	1,50	0,493	0,329

En la siguiente tabla, se exponen los valores del peso y el volumen de RCD, agrupados por niveles y apartados

Material según "Decisión 2014/955/UE. Lista europea de residuos"	Peso (t)	Volumen (m³)
RCD de Nivel I		
1 Tierras y pétreos de la excavación	322,738	339,367
RCD de Nivel II		
RCD de naturaleza no pétrea		
1 Asfalto	0,000	0,000
2 Madera	0,088	0,080
3 Metales (incluidas sus aleaciones)	0,002	0,001
4 Papel y cartón	0,011	0,015

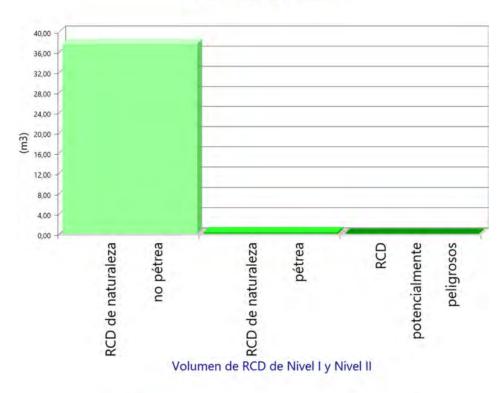


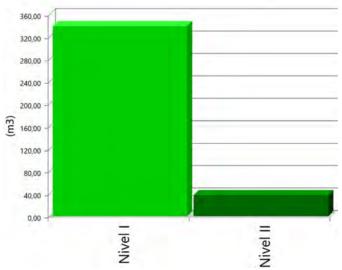
Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

Material según "Decisión 2014/955/UE. Lista europea de residuos"	Peso (t)	Volumen (m³)
5 Plástico	0,005	0,008
6 Vidrio	0,000	0,000
7 Yeso	0,000	0,000
8 Basuras	56,289	37,526
RCD de naturaleza pétrea		
1 Arena, grava y otros áridos	0,000	0,000
2 Hormigón	0,000	0,000
3 Ladrillos, tejas y materiales cerámicos	0,000	0,000
4 Piedra	0,493	0,329

Volumen de RCD de Nivel II





Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

Volumen de RCD de Nivel II

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

6. MEDIDAS PARA LA PLANIFICACIÓN Y OPTIMIZACIÓN DE LA GESTIÓN DE LOS RESIDUOS RESULTANTES DE LA CONSTRUCCIÓN Y DEMOLICIÓN DE LA OBRA OBJETO DEL PROYECTO

En la fase de proyecto se han tenido en cuenta las distintas alternativas compositivas, constructivas y de diseño, optando por aquellas que generan el menor volumen de residuos en la fase de construcción y de explotación, facilitando, además, el desmantelamiento de la obra al final de su vida útil con el menor impacto ambiental.

Con el fin de generar menos residuos en la fase de ejecución, el constructor asumirá la responsabilidad de organizar y planificar la obra, en cuanto al tipo de suministro, acopio de materiales y proceso de ejecución.

Como criterio general, se adoptarán las siguientes medidas para la planificación y optimización de la gestión de los residuos generados durante la ejecución de la obra:

- La excavación se ajustará a las dimensiones específicas del proyecto, atendiendo a las cotas de los planos de cimentación, hasta la profundidad indicada en el mismo que coincidirá con el Estudio Geotécnico correspondiente con el visto bueno de la Dirección Facultativa. En el caso de que existan lodos de drenaje, se acotará la extensión de las bolsas de los mismos.
- Se evitará en lo posible la producción de residuos de naturaleza pétrea (bolos, grava, arena, etc.), pactando con el proveedor la devolución del material que no se utilice en la obra.
- El hormigón suministrado será preferentemente de central. En caso de que existan sobrantes se utilizarán en las partes de la obra que se prevea para estos casos, como hormigones de limpieza, base de solados, rellenos, etc.
- Las piezas que contengan mezclas bituminosas, se suministrarán justas en dimensión y extensión, con el fin de evitar los sobrantes innecesarios. Antes de su colocación se planificará la ejecución para proceder a la apertura de las piezas mínimas, de modo que queden dentro de los envases los sobrantes no ejecutados.
- Todos los elementos de madera se replantearán junto con el oficial de carpintería, con el fin de optimizar la solución, minimizar su consumo y generar el menor volumen de residuos.
- El suministro de los elementos metálicos y sus aleaciones, se realizará con las cantidades mínimas y estrictamente necesarias para la ejecución de la fase de la obra correspondiente, evitándose cualquier trabajo dentro de la obra, a excepción del montaje de los correspondientes kits prefabricados.
- Se solicitará de forma expresa a los proveedores que el suministro en obra se realice con la menor cantidad de embalaje posible, renunciando a los aspectos publicitarios, decorativos y superfluos.

En el caso de que se adopten otras medidas alternativas o complementarias para la planificación y optimización de la gestión de los residuos de la obra, se le comunicará de forma fehaciente al director de obra y al director de la ejecución de la obra para su conocimiento y aprobación. Estas medidas no supondrán menoscabo alguno de la calidad de la obra, ni interferirán en el proceso de ejecución de la misma.

7. OPERACIONES DE REUTILIZACIÓN, VALORIZACIÓN O ELIMINACIÓN A QUE SE DESTINARÁN LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN QUE SE GENEREN EN LA OBRA

El desarrollo de las actividades de valorización de residuos de construcción y demolición requerirá autorización previa del órgano competente en materia medioambiental de la Comunidad Autónoma correspondiente, en los términos establecidos por la legislación vigente en materia de residuos.

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

La autorización podrá ser otorgada para una o varias de las operaciones que se vayan a realizar, y sin perjuicio de las autorizaciones o licencias exigidas por cualquier otra normativa aplicable a la actividad. Se otorgará por un plazo de tiempo determinado, y podrá ser renovada por periodos sucesivos.

La autorización sólo se concederá previa inspección de las instalaciones en las que vaya a desarrollarse la actividad y comprobación de la cualificación de los técnicos responsables de su dirección y de que está prevista la adecuada formación profesional del personal encargado de su explotación.

Los áridos reciclados obtenidos como producto de una operación de valorización de residuos de construcción y demolición deberán cumplir los requisitos técnicos y legales para el uso a que se destinen.

Cuando se prevea la operación de reutilización en otra construcción de los sobrantes de las tierras procedentes de la excavación, de los residuos minerales o pétreos, de los materiales cerámicos o de los materiales no pétreos y metálicos, el proceso se realizará preferentemente en el depósito municipal.

Cuando se destinen residuos no peligrosos de construcción y demolición, a la preparación para la reutilización, el reciclado y otra valorización de materiales, incluidas las operaciones de relleno, deberá alcanzar como mínimo el 70% en peso de los producidos, excluyendo los materiales en estado natural de tierras sobrantes y restos de piedra definidos en la categoría 17 05 04 de la lista de residuos.

En relación al destino previsto para los residuos no reutilizables ni valorables "in situ", se expresan las características, su cantidad, el tipo de tratamiento y su destino, en la tabla siguiente:

Material según "Decisión 2014/955/UE. Lista europea de residuos"	Código LER	Tratamiento	Destino	Peso (t)	Volumen (m³)		
RCD de Nivel I							
1 Tierras y pétreos de la excavación							
Tierra y piedras distintas de las especificadas en el código 17 05 03.	17 05 04	Sin tratamiento específico	Restauración / Vertedero	322,738	339,367		
RCD de Nivel II							
RCD de naturaleza no pétrea							
1 Madera							
Madera.	17 02 01	Reciclado	Gestor autorizado RNPs	0,088	0,080		
2 Metales (incluidas sus aleaciones)							
Hierro y acero.	17 04 05	Reciclado	Gestor autorizado RNPs	0,002	0,001		
Cables distintos de los especificados en el código 17 04 10.	17 04 11	Reciclado	Gestor autorizado RNPs	0,000	0,000		
3 Papel y cartón							
Envases de papel y cartón.	15 01 01	Reciclado	Gestor autorizado RNPs	0,011	0,015		
4 Plástico							
Plástico.	17 02 03	Reciclado	Gestor autorizado RNPs	0,005	0,008		

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

Material según "Decisión 2014/955/UE. Lista europea de residuos"	Código LER	Tratamiento	Destino	Peso (t)	Volumen (m³)
5 Basuras					
Residuos biodegradables.	20 02 01	Reciclado / Vertedero	Planta reciclaje RSU	37,743	25,162
Residuos de la limpieza viaria.	20 03 03	Reciclado / Vertedero	Planta reciclaje RSU	18,546	12,364
RCD de naturaleza pétrea					
1 Piedra					
Residuos del corte y serrado de piedra distintos de los mencionados en el código 01 04 07.	01 04 13	Sin tratamiento específico	Restauración / Vertedero	0,493	0,329
Notas: RCD: Residuos de construcción y RSU: Residuos sólidos urbanos RNPs: Residuos no peligrosos RPs: Residuos peligrosos	demolición				

8. MEDIDAS PARA LA SEPARACIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN EN OBRA

Los residuos de construcción y demolición se separarán en las siguientes fracciones cuando, de forma individualizada para cada una de dichas fracciones, la cantidad prevista de generación de residuos para el total de la obra supere las cantidades expresadas en la siguiente tabla:

TIPO DE RESIDUO		TOTAL RESIDUO OBRA (t)	UMBRAL SEGÚN NORMA (t)	Separación obligatoria en obra y entrega a Gestor Autorizado
Hormigón LER 17 01 01		0,00	> 80	NO OBLIGATORIA
Fracciones minerales	Ladrillos, tejas y materiales cerámicos LER 17 01 02, LER 17 01 03	0,00	> 40	NO OBLIGATORIA
	Piedra LER 17 05 04	0,49		OBLIGATORIA
Metales (incluidas	sus aleaciones) LER 17 04	2,000e-03		OBLIGATORIA
Madera LER 17 02	01	0,09		OBLIGATORIA
Plástico LER 17 02 03		5,000e-03		OBLIGATORIA
Vidrio LER 17 02 02		0,00		OBLIGATORIA
Yeso LER 17 08 02		0,00		OBLIGATORIA
Papel y cartón LER	15 01 01	0,01	> 0,50	NO OBLIGATORIA

Cuando el peso estimado de la fracción de hormigón o de la fracción de ladrillos/tejas/cerámicos/azulejos supere los umbrales de la tabla anterior, dichas fracciones deberán separarse de las fracciones minerales.

En aquellos casos en que sea obligatoria la clasificación en obra de las fracciones de los residuos de construcción y demolición, se acreditará documentalmente esta obligación mediante la entrega a los gestores autorizados con el fin de solicitar la devolución de la garantía correspondiente.

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

Si por falta de espacio físico en la obra no resulta técnicamente viable efectuar dicha separación en origen, el poseedor podrá encomendar la separación de fracciones a un gestor de residuos en una instalación de tratamiento de residuos de construcción y demolición externa a la obra. En este último caso, el poseedor deberá obtener del gestor de la instalación documentación acreditativa de que éste ha cumplido, en su nombre.

9. PRESCRIPCIONES EN RELACIÓN CON EL ALMACENAMIENTO, MANEJO, SEPARACIÓN Y OTRAS OPERACIONES DE GESTIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN

El depósito temporal de los escombros se realizará en contenedores metálicos con la ubicación y condiciones establecidas en las ordenanzas municipales, o bien en sacos industriales con un volumen inferior a un metro cúbico, quedando debidamente señalizados y segregados del resto de residuos.

Aquellos residuos valorizables, como maderas, plásticos, chatarra, etc., se depositarán en contenedores debidamente señalizados y segregados del resto de residuos, con el fin de facilitar su gestión.

Los contenedores deberán estar pintados con colores vivos, que sean visibles durante la noche, y deben contar con una banda de material reflectante de, al menos, 15 centímetros a lo largo de todo su perímetro, figurando de forma clara y legible la siguiente información:

- Razón social.
- Código de Identificación Fiscal (C.I.F.).
- Número de teléfono del titular del contenedor/envase.
- Número de inscripción en el Registro de Transportistas de Residuos del titular del contenedor.

Dicha información deberá quedar también reflejada a través de adhesivos o placas, en los envases industriales u otros elementos de contención.

El responsable de la obra a la que presta servicio el contenedor adoptará las medidas pertinentes para evitar que se depositen residuos ajenos a la misma. Los contenedores permanecerán cerrados o cubiertos fuera del horario de trabajo, con el fin de evitar el depósito de restos ajenos a la obra y el derramamiento de los residuos.

En el equipo de obra se deberán establecer los medios humanos, técnicos y procedimientos de separación que se dedicarán a cada tipo de RCD.

Se deberán cumplir las prescripciones establecidas en las ordenanzas municipales, los requisitos y condiciones de la licencia de obra, especialmente si obligan a la separación en origen de determinadas materias objeto de reciclaje o deposición, debiendo el constructor o el jefe de obra realizar una evaluación económica de las condiciones en las que es viable esta operación, considerando las posibilidades reales de llevarla a cabo, es decir, que la obra o construcción lo permita y que se disponga de plantas de reciclaje o gestores adecuados.

El constructor deberá efectuar un estricto control documental, de modo que los transportistas y gestores de RCD presenten los vales de cada retirada y entrega en destino final. En el caso de que los residuos se reutilicen en otras obras o proyectos de restauración, se deberá aportar evidencia documental del destino final.

Los restos derivados del lavado de las canaletas de las cubas de suministro de hormigón prefabricado serán considerados como residuos y gestionados como le corresponde (LER 17 01 01).

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

Se evitará la contaminación mediante productos tóxicos o peligrosos de los materiales plásticos, restos de madera, acopios o contenedores de escombros, con el fin de proceder a su adecuada segregación.

Las tierras superficiales que puedan destinarse a jardinería o a la recuperación de suelos degradados, serán cuidadosamente retiradas y almacenadas durante el menor tiempo posible, dispuestas en caballones de altura no superior a 2 metros, evitando la humedad excesiva, su manipulación y su contaminación.

Los residuos que contengan amianto cumplirán los preceptos dictados por la legislación vigente sobre esta materia, así como la legislación laboral de aplicación.

10. VALORACIÓN DEL COSTE PREVISTO DE LA GESTIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN.

El coste previsto de la gestión de los residuos se ha determinado a partir de la estimación descrita en el apartado 5, "ESTIMACIÓN DE LA CANTIDAD DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN QUE SE GENERARÁN EN LA OBRA", aplicando los precios correspondientes para cada unidad de obra, según se detalla en el capítulo de Gestión de Residuos del presupuesto del proyecto.

Subcapítulo	TOTAL (€)
TOTAL	198,40

11. Determinación del importe de la fianza

Con el fin de garantizar la correcta gestión de los residuos de construcción y demolición generados en las obras, las Entidades Locales exigen el depósito de una fianza u otra garantía financiera equivalente, que responda de la correcta gestión de los residuos de construcción y demolición que se produzcan en la obra, en los términos previstos en la legislación autonómica y municipal.

En el presente estudio se ha considerado, a efectos de la determinación del importe de la fianza, los importe mínimo y máximo fijados por la Entidad Local correspondiente.

- Costes de gestión de RCD de Nivel I: 4.00 €/m³

- Costes de gestión de RCD de Nivel II: 10.00 €/m³

- Importe mínimo de la fianza: 150.00 € - como mínimo un 0.2 % del PEM.

- Importe máximo de la fianza: 60000.00 €

En el cuadro siguiente, se determina el importe de la fianza o garantía financiera equivalente prevista en la gestión de RCD.

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

Presupuesto de Ejecución Material de la Obra (PEM)

70.939,17 €

A: ESTIMACIÓN DEL COSTE DE TRATAMIENTO DE RCD A EFECTOS DE LA DETERMINACIÓN DE LA FIANZA									
Tipología	Peso (t)	Volumen (m³)	Coste de gestión (€/m³)	Importe (€)	% s/PEM				
A.1. RCD de Nivel I									
Tierras y pétreos de la excavación	322,738	339,367	4,00						
Total Nivel I				1.357,468 ⁽¹⁾	2,38				
A.2. RCD de Nivel II									
RCD de naturaleza pétrea	0,493	0,329	10,00						
RCD de naturaleza no pétrea	56,395	37,630	10,00						
RCD potencialmente peligrosos	0,000	0,000	10,00						
Total Nivel II		379,59 ⁽²⁾	0,67						
Total 1.737,06									

Notas

⁽¹⁾ Entre 150,00€ y 60.000,00€.

⁽²⁾ Como mínimo un 0.2 % del PEM.

B: RESTO DE COSTES DE GESTIÓN		
Concepto	Importe (€)	% s/PEM
Costes administrativos, alquileres, portes, etc.	85,41	0,15

TOTAL: **1.822,47€** 3,20

12. PLANOS DE LAS INSTALACIONES PREVISTAS PARA EL ALMACENAMIENTO, MANEJO, SEPARACIÓN Y OTRAS OPERACIONES DE GESTIÓN DE LOS RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN

Los planos de las instalaciones previstas para el almacenamiento, manejo, separación y, en su caso, otras operaciones de gestión de los residuos de construcción y demolición dentro de la obra, se adjuntan al presente estudio.

En los planos, se especifica la ubicación de:

- Las bajantes de escombros.
- Los acopios y/o contenedores de los distintos tipos de RCD.
- Los contenedores para residuos urbanos.
- Las zonas para lavado de canaletas o cubetas de hormigón.
- La planta móvil de reciclaje "in situ", en su caso.
- Los materiales reciclados, como áridos, materiales cerámicos o tierras a reutilizar.

Anejos a la Memoria

Estudio de gestión de residuos de construcción y demolición

- El almacenamiento de los residuos y productos tóxicos potencialmente peligrosos, si los hubiere.

Estos PLANOS podrán ser objeto de adaptación al proceso de ejecución, organización y control de la obra, así como a las características particulares de la misma, siempre previa comunicación y aceptación por parte del director de obra y del director de la ejecución de la obra.

Fn

EL PRODUCTOR DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN

13. Documentos adjuntos al Estudio de gestión de residuos de construcción y demolición

En Huercal de Almería, a 10 de Septiembre de 2025

Fdo.: Jose Antonio Sánchez Hernández

Arquitecto

Firma

2.PRESUPUESTO

M01051

CÓDIGO	CANTIDAD UD	RESUMEN	PRECIO	SUBTOTAL	IMPORTE
CAPÍTULO	1 REPARACION D	E SENDA			
01.01	m2	ACODICIONAMIENTO MANUAL DE SENDA			
		Acondicionamiento manual de senda, incluy endo la limpieza, regulariz- cesaria, recolocación de piedras, mov imiento de tierras, refuerzo del ta		•	
		de sangraderas en tierra. Está incluido el acceso al tajo a pie en itinera		•	
O01004	0,100 h	Oficial especialista	30,23	3,02	
O01004	0,400 h	Peón	24,00	9,60	
M04001	0,020 h	Compresor 31/70 CV, dos martillos	37,86	0,76	
ME00500	0,500 h	Martillo perforador hasta 30 CV, sin mano de obra	0,30	0,15	
WIE00000	0,000 11	marino ponorador nacia de ev, em mario de esta		0,10	
		TOTAL PAI	RTIDA		13,53
Asciende el pr	ecio total de la partida a	la mencionada cantidad de TRECE EUROS con CINCUENTA Y TR	ES CÉNTIMOS		
01.02	m²	Desbroce y limpieza manual con densidad alta			
		Desbroce y limpieza manual de sendas con densidad alta (vegetación	herbácea y arbustiva con	densidad alta, y	
		vegetación arbórea, con una superficie cubierta mayor del 80 %). Se	•		
		repaso de tocones con tijeras o motosierra, apeo o poda de árboles (ø	, •		
		ma de 2 m; limpieza, recogida, apilado y distribución de restos forestal o amontonado en un lateral de la misma. Está incluido el acceso al tajo			
		2 horas.	o a pie en iunerano de ida y	vuella illielloi a	
O01004	0,034 h	Oficial especialista	30,23	1,03	
O01009	0,068 h	Peón	24,00	1,63	
M03010	0,034 h	Motodesbrozadora, sin mano de obra	1,98	0,07	
M03014	0,034 h	Motosierra, sin mano de obra	1,57	0,05	
		TOTAL PAI	 RTIDA		2,78
Asciende el pr	ecio total de la partida a	la mencionada cantidad de DOS EUROS con SETENTA Y OCHO C	CÉNTIMOS		
01.03	m2	ACONDICIONAMIENTO DE SENDA CON MAQUINARIA LIGERA			
		Acondicionamiento de senda con maquinaria ligera, incluyendo el mov	imiento de tierras, regulariza	ción de la plata-	
		forma dando la pendiente necesaria, recolocación de piedras, refuerzo zación de sangraderas en tierra.	del talud con materiales de	la zona y reali-	
O01004	0,050 h	Oficial especialista	30,23	1,51	
O01009	0,060 h	Peón	24,00	1,44	

61,37

TOTAL PARTIDA.....

3,07

6,02

Asciende el precio total de la partida a la mencionada cantidad de SEIS EUROS con DOS CÉNTIMOS

Minicargadora ruedas 31/70cv

0,050 h

BAYARCAL

CÉNTIMOS

CÓDIGO	CANTIDAD UD	RESUMEN	PRECIO	SUBTOTAL	IMPORTE
CAPÍTULO 02	PASARELAS DE	MADERA			
2.01.	ud				
		Despeje de v egetación en alrededor del entorno de los puentes a instalar.	Incluye la poda de ram	as del arbolado	
		próximo y el desbroce de matorral o vegetación herbácea, siempre que co	nstituy a un impedimento	para su visibili-	
		dad. Superficie a despejar entre 50 y 100 m².			
01007	10,000 h	Jefe de cuadrilla forestal	24,77	247,70	
01020	20,000 h	Peón con motosierra	25,24	504,80	
01019	5,000 h	Peon con motodesbrozadora	25,59	127,95	
01009	10,800 h	Peón	24,00	259,20	
100015	10,800 h	Astilladora	3,15	34,02	
100010	10,000 11	Admiddord		04,02	
		TOTAL PARTID	A		1.173,6
sciende el preci	io total de la partida a	la mencionada cantidad de MIL CIENTO SETENTA Y TRES EUROS cor	n SESENTA Y SIETE (CÉNTIMOS	
2.02.	pa	Accesos y servicios afectados			
	•	Servicios afectados y arreglo paso servidumbres para ejecución de la obra	y caminos de acceso a	fincas. A justi-	
		ficar.		·	
			Sin descomposicion	ón	
		TOTAL PARTID)A		1.000,0
sciende el preci	io total de la partida a	la mencionada cantidad de MIL EUROS			
2.03.	m³	•			
		Ejecución de mampostería concertada 1 cara vista, considerando mampue	-		
		mortero de cemento, incluso preparación de piedras, asiento y rejuntado co		•	
		terminado. En muros de hasta 50 cm de espesor y hasta 2 m de altura. No	se incluye el suministr	o, transporte de	
2055	0.050 3	la piedra ni medios auxiliares.	445.00	50.00	
3055	0,350 m³	Mortero cemento y arena M-7.5 (1/5)	145,39	50,89	
01009	13,250 h	Peón	24,00	318,00	
01004	13,250 h	Oficial especialista	30,23	400,55	
		TOTAL PARTID)A		769,4
ÉNTIMOS		la mencionada cantidad de SETECIENTOS SESENTA Y NUEVE EURO Pasarela de madera tipología 1 (4.60 m)	OS con CUARENTA Y	CUATRO	
Asciende el preci CÉNTIMOS 12.04.	io total de la partida a ud		ve nivel IV para su usc la pasarela, incluyendo mo, se incluyen los trat	o en exteriores. tableros, baran- pajos de cimen-	
CÉNTIMOS		Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 se	ve nivel IV para su usc la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat	o en exteriores. tableros, baran- pajos de cimen- polidad y seguri-	
ÉNTIMOS 2.04.	ud	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto.	ive nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo o	o en exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en	
ÉNTIMOS 2.04.		Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 se	ve nivel IV para su usc la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat	o en exteriores. tableros, baran- pajos de cimen- polidad y seguri-	
ÉNTIMOS 2.04.	ud	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto.	ive nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo o	o en exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en	
CO019 1A0017	ud 1,000 UD	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 so planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras	ive nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo d	o en exteriores. tableros, baran- pajos de cimen- polidad y seguri- con indicado en	
CO019 1A0017 1A0045	ud 1,000 UD 9,200 m	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 so los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla	ive nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo d 100,00 31,42	o en exteriores. tableros, baran- pajos de cimen- polidad y seguri- con indicado en 100,00 289,06	
CO019 1A0017 1A0045 1A001	1,000 UD 9,200 m 5,520 m ² 21,850 m	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV tarima Elementos de madera tratada en autocleve clase IV estructura	lve nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo e 100,00 31,42 37,79 9,50	o en exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 100,00 289,06 208,60 207,58	
CÉNTIMOS 2.04. C0019 1A0017 1A0045 1A001 001004	1,000 UD 9,200 m 5,520 m ² 21,850 m 50,550 h	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista	ave nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo 100,00 31,42 37,79 9,50 30,23	o en exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13	
CÉNTIMOS 2.04. C0019 1A0017 1A0045 1A001 001004	1,000 UD 9,200 m 5,520 m ² 21,850 m	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 slos planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV tarima Elementos de madera tratada en autocleve clase IV estructura Oficial especialista	ive nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo d 100,00 31,42 37,79 9,50 30,23 24,00	tableros, baran- pajos de cimen- pajos de cime	
2.04. 2.04. 0.0019 0.00017 0.00045 0.01004 0.01009	1,000 UD 9,200 m 5,520 m ² 21,850 m 50,550 h	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID	ive nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo 100,00 31,42 37,79 9,50 30,23 24,00	o en exteriores. tableros, baran- pajos de cimen- pajos de cim	3.546,57
CÉNTIMOS 2.04. AC0019 MA0017 MA0045 MA001 D01004 D01009	1,000 UD 9,200 m 5,520 m ² 21,850 m 50,550 h 50,550 h	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 slos planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV tarima Elementos de madera tratada en autocleve clase IV estructura Oficial especialista	ive nivel IV para su uso la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo 100,00 31,42 37,79 9,50 30,23 24,00	o en exteriores. tableros, baran- pajos de cimen- pajos de cim	3.546,57
C0019 1A0017 1A0045 1A001 101004 101009 Sciende el preci	1,000 UD 9,200 m 5,520 m ² 21,850 m 50,550 h 50,550 h	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 slos planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI	ive nivel IV para su uso la pasarela, incluyendo mo, se incluyen los tratindo la estabilidad, durat se realizará de acuerdo (100,00) 31,42 37,79 9,50 30,23 24,00 ———————————————————————————————————	tableros, baran- bajos de cimen- bajos de cime	3.546,5
C0019 1A0017 1A0045 1A001 101004 101009 Sciende el preci	1,000 UD 9,200 m 5,520 m ² 21,850 m 50,550 h 50,550 h	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 slos planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimistación y la construcción de los muros de mampostería de apoyo, garantiza	la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo (100,00 31,42 37,79 9,50 30,23 24,00	tableros, baran- bajos de cimen- bilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y De en exteriores. tableros, baran- bajos de cimen- bilidad y seguri-	3.546,5
CÉNTIMOS 2.04. C0019 1A0017 1A0045 1A001 001004 001009	1,000 UD 9,200 m 5,520 m ² 21,850 m 50,550 h 50,550 h	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimistración y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si	la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo (100,00 31,42 37,79 9,50 30,23 24,00	tableros, baran- bajos de cimen- bilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y De en exteriores. tableros, baran- bajos de cimen- bilidad y seguri-	3.546,5
C0019 1A0017 1A0045 1A001 001009 Sciende el preci	1,000 UD 9,200 m 5,520 m² 21,850 m 50,550 h 50,550 h io total de la partida a	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto.	la pasarela, incluy endo mo, se incluy en los tratindo la estabilidad, durat se realizará de acuerdo (100,00 31,42 37,79 9,50 30,23 24,00 15 EUROS con CINCUIVE nive nivel IV para su uso la pasarela, incluy endo mo, se incluy en los tratindo la estabilidad, durat se realizará de acuerdo (100,00 15 15 15 15 15 15 15 15 15 15 15 15 15	tableros, baran- bajos de cimen- bilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y De en exteriores. tableros, baran- bajos de cimen- bilidad y seguri- con indicado en	3.546,5
ÉNTIMOS 2.04. C0019 IA0017 IA0045 IA001 01009 sciende el preci IETE CÉNTIM 2.05.	1,000 UD 9,200 m 5,520 m ² 21,850 m 50,550 h 50,550 h	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Peón	la pasarela, incluyendo mo, se incluyen los trat indo la estabilidad, durat se realizará de acuerdo (100,00 31,42 37,79 9,50 30,23 24,00	tableros, baran- bajos de cimen- bilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y De en exteriores. tableros, baran- bajos de cimen- bilidad y seguri-	3.546,5
ÉNTIMOS 2.04. C0019 IA0017 IA0045 IA001 01009 sciende el preci IETE CÉNTIM 2.05.	1,000 UD 9,200 m 5,520 m² 21,850 m 50,550 h 50,550 h io total de la partida a	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto.	la pasarela, incluy endo mo, se incluy en los tratindo la estabilidad, durat se realizará de acuerdo (100,00 31,42 37,79 9,50 30,23 24,00 15 EUROS con CINCUIVE nive nivel IV para su uso la pasarela, incluy endo mo, se incluy en los tratindo la estabilidad, durat se realizará de acuerdo (100,00 15 15 15 15 15 15 15 15 15 15 15 15 15	tableros, baran- bajos de cimen- bilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y De en exteriores. tableros, baran- bajos de cimen- bilidad y seguri- con indicado en	3.546,5
C0019 1A0017 1A0045 1A001 101004 101009 Sciende el preci	1,000 UD 9,200 m 5,520 m² 21,850 m 50,550 h 50,550 h io total de la partida a OS ud	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Peón	la pasarela, incluyendo mo, se incluyen los tratindo la estabilidad, durat se realizará de acuerdo (100,00) 31,42 37,79 9,50 30,23 24,00 IS EUROS con CINCUIVA en incluyendo mo, se incluyen los tratindo la estabilidad, durat se realizará de acuerdo (24,00)	tableros, baran- bajos de cimen- bilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y De en exteriores. tableros, baran- bajos de cimen- bilidad y seguri- con indicado en 1.452,00	3.546,5
C0019 1A0017 1A0045 1A001 001009 001009 101004 001009	1,000 UD 9,200 m 5,520 m² 21,850 m 50,550 h 50,550 h io total de la partida a OS ud	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 slos planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 slos planos correspondientes y las especificaciones del proy ecto. Peón Oficial especialista	la pasarela, incluyendo mo, se incluyen los tratindo la estabilidad, durat se realizará de acuerdo (100,00) 31,42 37,79 9,50 30,23 24,00 ———————————————————————————————————	tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y De en exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 1.452,00 1.828,92	3.546,5
ENTIMOS 2.04. C0019 IA0017 IA0045 IA001 01009 Sciende el preci IETE CÉNTIM 2.05.	1,000 UD 9,200 m 5,520 m² 21,850 m 50,550 h 50,550 h io total de la partida a OS ud	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Peón Oficial especialista Elementos metálicos para esamble de estructuras	la pasarela, incluyendo mo, se incluyen los tratindo la estabilidad, durat se realizará de acuerdo	tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y JENTA Y O en exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 1.452,00 1.828,92 200,00	3.546,5
ENTIMOS 2.04. C0019 IA0017 IA0045 IA001 01009 Sciende el preci IETE CÉNTIM 2.05.	1,000 UD 9,200 m 5,520 m² 21,850 m 50,550 h 50,550 h io total de la partida a OS ud 60,500 h 60,500 h 2,000 UD 12,000 m	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisi tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proy ecto. Peón Oficial especialista Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla	la pasarela, incluyendo mo, se incluyen los tratindo la estabilidad, durat se realizará de acuerdo	o en exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y Den exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 1.452,00 1.828,92 200,00 377,04	3.546,5
C0019 1A0017 1A0045 1A001 001009 001009 001004	1,000 UD 9,200 m 5,520 m² 21,850 m 50,550 h 50,550 h io total de la partida a OS ud 60,500 h 60,500 h 2,000 UD 12,000 m 8,280 m²	Pasarela de madera tipología 1 (4.60 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimisitación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proyecto. Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV estructura Oficial especialista Peón TOTAL PARTID Ia mencionada cantidad de TRES MIL QUINIENTOS CUARENTA Y SEI Pasarela de madera tipología 2 (6.00 m) Construcción de pasarela peatonal de madera de pino, tratada en autocla Comprende el suministro, transporte y montaje de la estructura principal de dillas y todos los elementos necesarios para su correcta ejecución. Asimist tación y la construcción de los muros de mampostería de apoyo, garantiza dad de la obra. La descomposición y detalle de la psasarela de tipología 1 si los planos correspondientes y las especificaciones del proy ecto. Peón Oficial especialista Elementos metálicos para esamble de estructuras Elementos de madera tratada en autoclave clase IV barandilla Elementos de madera tratada en autocleve clase IV tarima Elementos de madera tratada en autocleve clase IV tarima	la pasarela, incluyendo mo, se incluyen los tratindo la estabilidad, durat se realizará de acuerdo (100,00) (10	Den exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 100,00 289,06 208,60 207,58 1.528,13 1.213,20 JENTA Y Den exteriores. tableros, baran- pajos de cimen- pilidad y seguri- con indicado en 1.452,00 1.828,92 200,00 377,04 312,90 300,39	3.546,5

CUADRO DE DESCOMPUESTOS

BAYARCAL

CODIGO	CANTIDAD UD	RESUMEN	PRECIO	SUBTOTAL	IMPORTE
02.06.	ud	Pasarela de madera tipología 3 (7.00 m)			
		Construcción de pasarela peatonal de madera de pino, tratada en autocl	ave nivel IV para su uso	en exteriores.	
		Comprende el suministro, transporte y montaje de la estructura principal de	e la pasarela, incluyendo	tableros, baran-	
		dillas y todos los elementos necesarios para su correcta ejecución. Asimi-		,	
		tación y la construcción de los muros de mampostería de apoyo, garantiz		, ,	
		dad de la obra. La descomposición y detalle de la pasarela de tipología 3	se realizará de acuerdo	con indicado en	
		los planos correspondientes y las especificaciones del proyecto.			
O01004	70,500 h	Oficial especialista	30,23	2.131,22	
O01009	70,500 h	Peón	24,00	1.692,00	
AC0019	2,000 UD	Elementos metálicos para esamble de estructuras	100,00	200,00	
MA0017	14,000 m	Elementos de madera tratada en autoclave clase IV barandilla	31,42	439,88	
MA0045	8,400 m ²	Elementos de madera tratada en autocleve clase IV tarima	37,79	317,44	
MA001	40,250 m	Elementos de madera tratada en autocleve clase IV estructura	9,50	382,38	
		TOTAL PARTI	 DA		5.162,92

Asciende el precio total de la partida a la mencionada cantidad de CINCO MIL CIENTO SESENTA Y DOS EUROS con NOVENTA Y DOS CÉNTIMOS

O01004

0,300 h

Oficial especialista

CÓDIGO	CANTIDAD UD	RESUMEN	PRECIO	SUBTOTAL	IMPORTE
CAPÍTULO	03 ARREGLOS VAR	108			
03.01.	m	VALLA DE POSTE Y CUERDA ml. Suministro, montaje e instalación de valla de madera de poste y cuero	da, de las siguientes cara	acterísticas: Ca-	
		racterísticas técnicas 1 Cuerdas de longitud 2 m, de nilón regenerado de ø			
		toclave (C4 CEP) con punta de 1,5m de longitud y un taladros para pasa vista: 0,9 -1,1m. Incluido ex cavación del terreno, accesorios para la fijació transporte de residuos a vertedero o planta de tratamiento autorizado, señ	on de las cuerdas a los po	ostes, retirada y	
		de higiene y de primeros auxilios.	unzacion providicital de	obido, medidae	
P00204	1,000 m	Cuerda de nilón regenerado de ø30mm.	12,00	12,00	
P00203	0,050 m³	HORMIGÓN HM-20/P/40/I, SUMINISTRADO	58,00	2,90	
P00201	2,000 u	Material complentario o pzas especiales	2,00	4,00	
P00202	1,000 m	Poste pino silvestre autoclave IV D.12	16,00	16,00	
O01009	0,500 h	Peón	24,00	12,00	
O01004	0,500 h	Oficial especialista	30,23	15,12	
		TOTAL PARTIE	DA		62,02
Asciende el pr	recio total de la partida a	la mencionada cantidad de SESENTA Y DOS EUROS con DOS CÉNTI	MOS		
03.02.	m	REPARACION CABLE VIDA			
		Suministro, desmontaje del sistema existente e instalación de un cable de	vida de seguridad en trar	nos de sendero	
		con condiciones de riesgo. El trabajo incluy e la provisión e instalación de	cable de acero inoxidabl	le A4 (AISI 316)	
		de 10 mm de diámetro, junto con todos los anclajes, tensores y remates neción a la roca.	ecesarios para su correc	ta y segura fija-	
P00205	1,000 m	Cable de acero inoxidable d.10 mm	12,00	12,00	
P00206	1,000 u	Anclajes de acero inoxidable	6,00	6,00	
P00201	2,000 u	Material complentario o pzas especiales	2,00	4,00	
O01009	0,300 h	Peón	24,00	7,20	

30,23

TOTAL PARTIDA.....

9,07

38,27

Asciende el precio total de la partida a la mencionada cantidad de TREINTA Y OCHO EUROS con VEINTISIETE CÉNTIMOS

CUADRO DE DESCOMPUESTOS

BAYARCAL

CÓDIGO CANTIDAD UD RESUMEN PRECIO SUBTOTAL IMPORTE

CAPÍTULO 04 GESTION DE RESIDUOS

04.01.

m3 Retirada de RCDs inertes por medios manuales

Clasificación y recogida selectiva en obra de los diferentes residuos de construcción y demolición inertes (hormigones, morteros, piedras y áridos, ladrillos, azulejos, tejas, etc...) para poder considerarlos limpios en la planta de tratamiento, al entregarlos de forma separada y facilitando con ello su valorización. Realizado todo ello por medios manuales. Incluido retirada a planta de valorización situada a una distancia máxima de 15 km, formada por: transporte, carga, descarga y canon de gestión.

Sin descomposición

Asciende el precio total de la partida a la mencionada cantidad de SESENTA Y OCHO EUROS con VEINTIOCHO CÉNTIMOS

CUADRO DE DESCOMPUESTOS

BAYARCAL

CÓDIGO CANTIDAD UD RESUMEN PRECIO SUBTOTAL IMPORTE

CAPÍTULO 05 SEGURIDAD Y SALUD

05.01.

ud Seguridad y Salud

Medidas de seguridad colectiva e individual para realizar las obras conforme a las condiciones de seguridad y salud, asi como a la ley de prevención de riesgos laborales y demás normativa vigente, y de acuerdo con el Estudio Básico de Seguridad y Salud correspondiente al proyecto.

Sin descomposición

Asciende el precio total de la partida a la mencionada cantidad de TRESCIENTOS SETENTA Y CINCO EUROS con CUARENTA Y NUEVE CÉNTIMOS

BAYARCAL

CÓDIGO	RESUMEN	UDS LONGITUD AN	CHURA ALTURA	PARCIALES	CANTIDAD	PRECIO	IMPORTE
	CAPÍTULO 01 REPAR	ACION DE SENDA					
01.01	m2 ACODICIONAMIENT	O MANUAL DE SENDA					
	pendiente necesaria, recolo	de senda, incluyendo la limpieza, regula ocación de piedras, mov imiento de tierra: e sangraderas en tierra. Está incluido el a as.	s, refuerzo del talud	con materiales			
			-		435,00	13,53	5.885,55
01.02	m ² Desbroce y limpieza	manual con densidad alta					
	densidad alta, y vegetació desbroce con motodesbroz (ø < 20 cm) y arbustos har restos forestales sobre la la	ual de sendas con densidad alta (vege in arbórea, con una superficie cubierta i adora, repaso de tocones con tijeras o n sta una altura máxima de 2 m; limpieza, adera inferior fuera de la senda o amon ajo a pie en itinerario de ida y vuelta infe	may or del 80 %). notosierra, apeo o po recogida, apilado y tonado en un lateral	Se incluye el oda de árboles distribución de			
		4.500,00	2,00				
			-		6.750,00	2,78	18.765,00
01.03	m2 ACONDICIONAMIEN	TO DE SENDA CON MAQUINARIA LI	GERA				
	ción de la plataforma dano	da con maquinaria ligera, incluyendo el lo la pendiente necesaria, recolocación alización de sangraderas en tierra.		-			
			_		648,00	6,02	3.900,96
	TOTAL CAPÍTULO (1 REPARACION DE SENDA				—	28.551,51

	Υ			

CÓDIGO	RESUMEN U	JDS LONGITUD ANCHURA ALTURA	PARCIALES	CANTIDAD	PRECIO	IMPORTE
	CAPÍTULO 02 PASARELAS DE MADI	ERA				
02.01.	ud Despeje de vegetacion alrededor del	puente				
	Despeje de vegetación en alrededor del entor del arbolado próximo y el desbroce de mato impedimento para su visibilidad. Superficie a	orral o vegetación herbácea, siempre que				
		•		3,00	1.173,67	3.521,01
02.02.	pa Accesos y servicios afectados					
	Servicios afectados y arreglo paso servidum fincas. A justificar.	bres para ejecución de la obra y camino	s de acceso a			
		-		1,00	1.000,00	1.000,00
02.03.	m³ Mampostería concertada 1 cara vista					
	Ejecución de mampostería concertada 1 cara colocados con mortero de cemento, incluso p de cemento, completamente terminado. En m No se incluye el suministro, transporte de la	oreparación de piedras, asiento y rejunta nuros de hasta 50 cm de espesor y hasta	do con mortero			
		·		10,50	769,44	8.079,12
02.04.	ud Pasarela de madera tipología 1 (4.60	m)				
	Construcción de pasarela peatonal de madernex teriores. Comprende el suministro, transpincluy endo tableros, barandillas y todos los mismo, se incluy en los trabajos de cimentac apoy o, garantizando la estabilidad, durabilida de la psasarela de tipología 1 se realizará de las especificaciones del proy ecto.	orte y montaje de la estructura principal elementos necesarios para su correcta ión y la construcción de los muros de n d y seguridad de la obra. La descompos	de la pasarela, ejecución. Asi- nampostería de sición y detalle			
		-		1,00	3.546,57	3.546,57
02.05.	ud Pasarela de madera tipología 2 (6.00	m)				
	Construcción de pasarela peatonal de madernex teriores. Comprende el suministro, transpincluy endo tableros, barandillas y todos los mismo, se incluy en los trabajos de cimentac apoy o, garantizando la estabilidad, durabilida de la psasarela de tipología 1 se realizará de las especificaciones del proy ecto.	orte y montaje de la estructura principal elementos necesarios para su correcta ión y la construcción de los muros de n d y seguridad de la obra. La descompos	de la pasarela, ejecución. Asi- nampostería de sición y detalle			
		·		1,00	4.471,25	4.471,25
02.06.	ud Pasarela de madera tipología 3 (7.00	m)				
	Construcción de pasarela peatonal de madera exteriores. Comprende el suministro, transpi incluy endo tableros, barandillas y todos los mismo, se incluy en los trabajos de cimentac apoy o, garantizando la estabilidad, durabilida de la pasarela de tipología 3se realizará de las especificaciones del proy ecto.	orte y montaje de la estructura principal elementos necesarios para su correcta ión y la construcción de los muros de n d y seguridad de la obra. La descompos	de la pasarela, ejecución. Asi- nampostería de sición y detalle			
		-		1,00	5.162,92	5.162,92
	TOTAL CAPÍTULO 02 PASARELAS	DE MADERA				25.780,87

BAYARCAL

CÓDIGO	RESUMEN	UDS LONGITUD ANCHURA ALTURA	PARCIALES	CANTIDAD	PRECIO	IMPORTE
	CAPÍTULO 03 ARREG	SLOS VARIOS				
03.01.	m VALLA DE POSTE Y	CUERDA				
	terísticas: Características te de madera tratada en au las cuerdas, ø12cm cada para la fijación de las cuer	instalación de valla de madera de poste y cuerda, de las sig écnicas 1 Cuerdas de longitud 2 m, de nilón regenerado de toclave (C4 CEP) con punta de 1,5m de longitud y un taladi 2mAltura vista: 0,9 -1,1m. Incluido excavación del terrer das a los postes, retirada y transporte de residuos a vertede ialización provisional de obras, medidas de higiene y de prim	ø30mmPos- ros para pasar no, accesorios ero o planta de			
		_		230,00	62,02	14.264,60
03.02.	m REPARACION CAB	LE VIDA				
	mos de sendero con cond acero inoxidable A4 (AISI	el sistema existente e instalación de un cable de vida de se iciones de riesgo. El trabajo incluye la provisión e instalació 316) de 10 mm de diámetro, junto con todos los anclajes, correcta y segura fijación a la roca.	on de cable de			
		-		30,00	38,27	1.148,10

TOTAL CAPÍTULO 03 ARREGLOS VARIOS

15.412,70

BAYARCAL

DATIANOAL								
CÓDIGO	RESUMEN	UDS LONGITUD ANCHURA ALTURA PARCIALES	CANTIDAD	PRECIO	IMPORTE			
	CAPÍTULO 04 GESTIO	N DE RESIDUOS						
04.01.	m3 Retirada de RCDs inertes por medios manuales							
	inertes (hormigones, morter rarlos limpios en la planta o valorización. Realizado tod	electiva en obra de los diferentes residuos de construcción y demolición os, piedras y áridos, ladrillos, azulejos, tejas, etc) para poder considede tratamiento, al entregarlos de forma separada y facilitando con ello su o ello por medios manuales. Incluido retirada a planta de valorización sina de 15 km, formada por: transporte, carga, descarga y canon de ges-						

TOTAL CAPÍTULO 04 GESTION DE RESIDUOS.....

12,00

68,28

819,36

819,36

PRESUPUESTO Y MEDICIONES

BAYARCAL CÓDIGO

05.01.

RESUMEN	UDS LONGITUD ANCHURA ALTURA	PARCIALES CANTIDAD	PRECIO	IMPORTE		
CAPÍTULO 05 SEGURIDAD	Y SALUD					
ud Seguridad y Salud						
seguridad y salud, asi como a la	Medidas de seguridad colectiva e individual para realizar las obras conforme a las condiciones de seguridad y salud, asi como a la ley de prevención de riesgos laborales y demás normativa vigente, y de acuerdo con el Estudio Básico de Seguridad y Salud correspondiente al proyecto.					
	_	1,00	375,49	375,49		
TOTAL CAPÍTULO 05 SE	GURIDAD Y SALUD			375,49		

70.939,93

RESUMEN DE PRESUPUESTO

BAYARCAL

CAPITULO	RESUMEN	EUROS	%
01 02 03 04 05	REPARACION DE SENDA PASARELAS DE MADERA ARREGLOS VARIOS GESTION DE RESIDUOS SEGURIDAD Y SALUD	28.551,51 25.780,87 15.412,70 819,36 375,49	40,25 36,34 21,73 1,16 0,53
	TOTAL EJECUCIÓN MATERIAL 13,00 % Gastos generales	70.939,93	
	SUMA DE G.G. y B.I.	13.478,59	
	21,00 % I.V.A	17.727,89	
	TOTAL PRESUPUESTO CONTRATA	102.146,41	
	TOTAL PRESUPUESTO GENERAL	102.146,41	

Asciende el presupuesto general a la expresada cantidad de CIENTO DOS MIL CIENTO CUARENTA Y SEIS EUROS con CUARENTA Y UN CÉNTIMO.

Almería, a 10 de septiembre de 2025.

El promotor La dirección facultativa

Adecuación y	y Meiora de	1 Sendero	Río Molinos	SI -A	148 – Bavárcal
Auctuacion	v iviciora uc	or Deligero	IXIO MIOIIIIOS	DL-A	140 – Davaicai

3. PLIEGO DE CONDICIONES TECNICAS

1. DISPOSICIONES GENERALES

1.1. Naturaleza y objeto

El presente Pliego de Prescripciones Técnicas tiene por objeto definir los requisitos técnicos mínimos que regirán la ejecución de las obras de adecuación y mejora del sendero Río Molinos SL-A 148, en el término municipal de Bayárcal (Almería).

Se describen los materiales, procedimientos de ejecución, controles y condiciones técnicas necesarias para garantizar la correcta calidad de las obras y su integración en el entorno. Incluye desbroces, conformación de firme, estabilidad de taludes, instalación y/o sustitución de elementos de seguridad (cable de vida, postes, barandillas), señalización, y la fabricación y montaje de pasarelas peatonales con sus cimentaciones.

1.2. Alcance

El ámbito de actuación se ajusta a lo recogido en la Memoria del Proyecto: trazado del SL-A 148, tramos, puntos singulares (Molino, pozas, etc.), y zonas de actuación indicadas en planos. Todas las obras descritas están definidas en la Memoria, representadas en los Planos y serán ejecutadas de acuerdo a las directrices que constan en el Pliego de Condiciones del Proyecto y a las órdenes que pueda dictar el Director de las Obras.

1.3. Documentación del contrato de obra

Forman parte integrante del contrato los siguientes documentos, que se ordenan según su prioridad en caso de omisión o posible contradicción entre ellos:

- 1. Las cláusulas establecidas en el contrato de ejecución de obra o arrendamiento, en caso de existir.
- 2. La Memoria, los planos, las mediciones y el presupuesto.
- 3. El presente Pliego de Condiciones Particulares.

Las instrucciones y órdenes emitidas por la Dirección Facultativa se considerarán incorporadas al Proyecto, teniendo carácter de interpretación, complemento o precisión de sus disposiciones.

Dentro de cada documento, las especificaciones textuales tendrán prevalencia sobre las representaciones gráficas y, en el caso de los planos, las cotas numéricas serán las que prevalezcan frente a las medidas obtenidas a escala.

1.4. Legislación y normativa aplicable

Se atenderá a la normativa vigente en materia de obra civil, materiales, seguridad y medio ambiente, entre otras: EHE, normas UNE aplicables, RD 1627/1997 sobre seguridad en obras, normativa autonómica y municipal que resulte de aplicación, y recomendaciones técnicas de Federación de Deportes de Montaña (FAM/FEDME) para señalización y uso público de senderos

2. DESCRIPCION DE LA OBRA

2.1. Acondicionamiento y mejora del sendero

- Desbroces y podas: se realizarán manual o mecánicamente, garantizando la mínima afección ambiental.
- Estabilización de firme: retirada de material suelto, compactación manual o con medios ligeros, y conformación del camino.
- Instalación de pasarelas: cimentación en mampostería o bloque revestido, montaje de estructura y barandillas de madera según planos.
- Cable de vida y vallas de madera: revisión, sustitución e instalación según lo previsto, garantizando seguridad y resistencia.

2.2. Estudio Básico de Seguridad y Salud

Se destina una partida del presupuesto a seguridad y salud en la obra, según lo dispuesto en el artículo 2 del Real Decreto 1627/97, de 24 de Octubre por el que se establecen disposiciones mínimas de seguridad y salud en las obras de construcción.

2.3. Gestión de residuos

Se destina una partida del presupuesto a la gestión de residuos según se establece en el REAL DECRETO 105/2008, de 1 de febrero por el que se regula la producción y gestión de los residuos de construcción y demolición

3. CARACTERISTICAS DE LOS MATERIALES

Todos los materiales que se utilicen en la ejecución de la obra, y para los cuales existan normas oficiales establecidas en relación con su empleo en las Obras Públicas o Industriales deberán satisfacer las que estén en vigor en la fecha de su utilización, así como las que se establecen en el presente P.P.T.P., debiendo ser aprobados por el Director de la obra que determinará la forma y condiciones en que deban ser examinados antes de su empleo. La utilización de materiales de procedencias autorizadas por el Director de la Obra o recomendadas en el presente Proyecto, no libera en ningún caso al Contratista de que los materiales cumplan las condiciones referidas en el párrafo anterior, pudiendo ser

rechazados, en cualquier momento, en caso de que se encuentren defectos de calidad o uniformidad. La manipulación de los materiales no habrá de alterar sus características, tanto al transportarlos como durante su empleo.

El Contratista podrá proponer y presentar marcas y muestras de los materiales para su aprobación y los certificados de los ensayos y análisis que la Dirección juzgue necesarios, los cuales se harán en los laboratorios y talleres que se determinan al Contratista. Las muestras de los materiales serán guardadas juntamente con los certificados de los análisis para la comprobación de los materiales.

Todos estos exámenes previstos no suponen la recepción de los materiales. Por tanto, la responsabilidad del Contratista, en el cumplimiento de esta obligación, no cesará mientras no sean recibidas las obras en las que se hayan empleado. Por consiguiente, el director o persona en quien delegue puede mandar retirar aquellos materiales que, aun estando colocados, presenten defectos no observados en el reconocimiento.

Cuantos gastos ocasionen las pruebas, ensayos análisis y demás operaciones en los materiales para su reconocimiento serán de cuenta del Contratista, ya que han sido tenidos en cuenta en los precios del Proyecto.

4. EJECUCCION DE LAS OBRAS

4.1. Condiciones generales

Las obras se ejecutarán de acuerdo con las especificaciones del presente Pliego, los Planos, cuadros de precios y las instrucciones del Director de la Obra, quién resolverá además, las cuestiones que se planteen referentes a la interpretación de los diferentes documentos y a las condiciones de ejecución.

El Contratista queda obligado a señalizar a su costa las obras objeto del contrato, con arreglo a las instrucciones y modelos que reciba del Director de Obra.

En la ejecución de las obras se procurará no alterar los servicios de carácter público más que en lo absolutamente necesario, dentro de los límites compatibles con el buen desarrollo y ejecución de los trabajos.

El Contratista deberá conocer suficientemente las condiciones de la localidad, de los materiales utilizables y de todas las circunstancias que puedan incidir en la ejecución de las obras; en la inteligencia de que a menos de establecer explícitamente lo contrario, no tendrá derecho a eludir sus responsabilidades y no formular reclamación alguna que se funde en datos antecedentes del Proyecto que puedan resultar equivocados o incompletos.

4.2. Unidades de obra

Estabilización y adecuación del firme. El camino se conformará con una anchura mínima de 1,20 m. Se retirará material suelto (pizarra, piedras, gravas) y se nivelará

manualmente, con aportación puntual de zahorra natural o suelo seleccionado en los tramos erosionados. En tramos de difícil acceso, se emplearán herramientas manuales. Se podrá emplear maquinaria ligera para la realización de los trabajos.

Desbroce y limpieza manual. Eliminación de la vegetación indeseable, bien sea herbácea o leñosa. El desbroce selectivo se realizará con motodesbrozadora y/o motosierra. En la realización de los trabajos de limpieza del matorral debe actuarse con precaución, pues existe la posibilidad provocar focos de plagas o enfermedades, de incrementar el riesgo de incendio forestal a causa de los restos vegetales, de producir un rebrote intenso del matorral después de su corta, de efectos negativos sobre la fauna o la flora, etc. Se respetarán las especies que por su interés ecológico o botánico han de permanecer, y que bajo ningún pretexto deben ser eliminadas.

Se señalizará por el Director de Obra las especies o zonas de matorral que deban respetarse.

Para evitar daños en los troncos del arbolado y/o especies arbustivas derivados de tropezones de la maquinaria o efecto del nylon de los cabezales de desbrozadora, se definirá un círculo libre de vegetación circundante al tronco. La altura de desbroce se mantendrá en todo momento entre 5 y 10 cm. Se retirará la vegetación invasiva y maleza que impida el tránsito, dejando libre una franja mínima de 1,20 m de anchura útil.

La poda de árboles se limitará a ramas bajas o interferentes, respetando la masa arbórea y evitando talas innecesarias.

Los residuos vegetales se acopiarán en puntos autorizados y, en su caso, se trasladarán a vertedero controlado o se triturarán in situ para acolchado.

Pasarelas de madera. La instalación de las pasarelas de madera se realizará de acuerdo a las especificaciones de los planos y demás información reflejada en la memoria. La construcción de estas pasarelas contempla la realización entorno de muros mampostería con mortero en la medida del material disponible en el entorno. En caso contrario, se comunicará al director de obra siendo sustituidos estos muros de mampostería por muros a base de bloques revestidos con piedra a ambas caras. Todo el material empleado para la conformación de las pasarelas de madera será tratado en autoclave clase IV y seguirán las especificaciones de las medidas reflejadas en los planos. Igualmente, todos los elementos metálicos serán galvanizados o inoxidables. Respecto a las actuaciones de limpieza asociadas a las pasarelas y la instalación de la pasarela deberá realizarse de tal modo que no se altere el cauce del río.

Señalética y otros. La instalación de vallas de madera y cables de vida se realizará de acuerdo con los planos que figuran en proyecto y en la memoria adjunta. Los postes serán de madera tratada en autoclave clase IV, \emptyset mínimo 12 cm, hincados al terreno con profundidad $\geq 0,50$ m o fijados con hormigón en caso de terreno suelto. La separación máxima entre postes será de 2,0 m. La cuerda será sintética trenzada $\emptyset \geq 30$ mm, resistente a la intemperie y al desgaste, fijada mediante grilletes o cáncamos galvanizados.

La altura de la cuerda respecto al suelo se mantendrá constante (0.90 - 1.10 m) siguiendo la pendiente del terreno.

Respecto al cable de vida, se retirarán los elementos existentes deteriorados. Los anclajes al terreno o roca se realizarán mediante pernos de acero inoxidable con resinas epoxi o expansivos, garantizando la resistencia mínima de $12\,\mathrm{kN}$ por punto. El cable será de acero galvanizado con diámetro $\geq 10\,\mathrm{mm}$, con tensores en los extremos y cada $15\,\mathrm{m}$ como máximo. El sistema deberá permitir la sujeción continua de los senderistas en los tramos más expuestos.

4.3. Ordenación de los trabajos y métodos constructivos

Corresponderá al Contratista organizar y dirigir los trabajos de ejecución de la obra, siempre que respete las prescripciones del presente Pliego y que de ello no resulte perjuicio alguno para la correcta ejecución de la obra, a juicio del director.

El Contratista podrá emplear cualquier método constructivo que estime adecuado para ejecutar las obras siempre que en su programa de trabajo lo hubiera propuesto y hubiera sido aceptado por la Dirección. También podrá variar los procedimientos constructivos durante la ejecución de las obras, sin más limitación que la aprobación previa de la Dirección.

En caso de que el Contratista propusiera en su programa de trabajo o, posteriormente, a tenor con el párrafo anterior, métodos constructivos que a su juicio implicarán especificaciones especiales, acompañará su propuesta con un estudio especial de la adecuación de tales métodos y una descripción con gran detalle del equipo que se propusiera emplear.

4.4. Servicios afectados

Una vez visitadas las explanadas afectadas por el Proyecto, se comprobaron los posibles servicios afectados que pueden interferir en el transcurso de la obra, considerándose los siguientes:

- Accesos a fincas privadas
- Dominio Público hidráulico

El Contratista está obligado a mantener provisionalmente durante la ejecución de la obra y a reponer a su finalización todas aquellas servidumbres (de paso, uso, suministro, etc.) afectadas por los trabajos. Son de cuenta del Contratista los trabajos necesarios para el mantenimiento y reposición de tales servidumbres.

El Contratista deberá obtener con la antelación necesaria para que no se presenten dificultades en el cumplimiento del Programa de Trabajos todos los permisos o licencias que se precisen para la ejecución de las obras definidas en el Proyecto, y cumplirá estrictamente todas las condiciones que imponga el organismo o entidad otorgante del permiso.

Los gastos de gestión derivados de la obtención de estos permisos serán siempre a cuenta del Contratista, así como todos los cánones para la ocupación temporal de terrenos para instalaciones, explotación de canteras, yacimientos, préstamos y vertederos.

Igualmente corresponderá al Contratista la elaboración de los proyectos y documentos necesarios para la legalización de las instalaciones previstas.

4.5. Plazo de ejecución de los trabajos

Los plazos contractuales de ejecución de las obras, se fijarán en el Pliego de Cláusulas Administrativas Particulares o en el Contrato de Adjudicación, a la vista de las consideraciones económicas o administrativas. De cualquier manera, en el presente Proyecto, teniendo en cuenta la importancia de las obras y los volúmenes de trabajo a ejecutar se ha programado su realización en un plazo total de TRES (3) MESES.

4.6. Replanteo

Previamente a la iniciación de los distintos trabajos, se efectuará el replanteo de las Obras y cuantos parciales exija su ejecución. Las líneas generales replanteadas se señalarán por medio de marcas, enfilaciones o balizas y se referirán a puntos invariables del terreno para que en todo tiempo y ocasión pueda ser fácilmente comprobada la posición que le corresponda.

De todo ello se levantarán Acta y los Planos correspondientes que deberán ser suscritos por la Dirección Facultativa y el Contratista.

Todos los gastos que origine el replanteo serán de cuenta del Contratista, que quedará obligado a

conservar y mantener en buen orden todas las marcas, enfilaciones o señales establecidas para

definir la obra y facilitar la inspección pudiendo ser requerido por el representante de la Dirección

Facultativa a interrumpir los trabajos en cualquier momento cuando dichas señales no se encuentren en debidas condiciones.

El Director podrá en todo momento proceder a comprobar los replanteos hechos por el Contratista,

siendo obligación de este el facilitar a su cargo, todo el personal y cuantos elementos juzgue precisos el Director para realizar con la mayor seguridad la comprobación que desee.

5. CONTROLES Y ENSAYOS

Ensayos o pruebas de todos los materiales permitirán establecer la idoneidad de los mismos para la función que le ha sido asignada. Dichos ensayos tendrán dos finalidades:

- Evaluar el nivel de calidad del material suministrado y determinar su aceptación o rechazo. Este control es ejecutado por la Dirección Facultativa.

 Detectar desviaciones en las características del material una vez que ha sido colocado en la obra. El Constructor es el responsable de su ejecución, siempre bajo la supervisión de la Dirección Facultativa y en estricto cumplimiento de las normativas vigentes.

6. MEDICION Y ABONO DE LAS OBRAS

Solamente serán abonadas las unidades de obra ejecutadas con arreglo a las condiciones que señala este Pliego, que figuran en los documentos del Proyecto o que hayan sido ordenadas por el Ingeniero Director o su representante.

Las partes que hayan de quedar ocultas, como cimientos, elementos de estructura, etc., se señalarán por duplicado en un croquis, firmado por el Ingeniero Director y el Contratista. En él figurarán cuantos datos sirvan de base para la medición, como dimensiones, peso, armaduras, etc., y todos aquellos que se consideren oportunos. En caso de no cumplirse los anteriores requisitos, serán de cuenta del Contratista los gastos necesarios para descubrir los elementos y comprobar sus dimensiones y buena construcción.

En los precios de cada unidad de obra se consideran incluidos los trabajos, medios auxiliares, energía, maquinaria, materiales y mano de obra necesarios para dejar la unidad totalmente terminada, todos los gastos generales como transportes, carga y descarga, pruebas y ensayos, desgastes de materiales auxiliares, costes indirectos, instalaciones, impuestos, derechos, etc. El Contratista no tendrá derecho a indemnización alguna como excedente de los precios consignados por estos conceptos.

Las unidades estarán completamente terminadas, con recibo, pintura, herrajes, accesorios, etc., aunque alguno de estos elementos no figure determinado en los cuadros de precios o estado de mediciones.

No admitiendo la índole especial de algunas obras, su abono por mediciones parciales, el director incluirá estas partidas completas, cuando lo estime oportuno, en las periódicas certificaciones parciales. Se consideran incluidos en los precios aquellos trabajos preparatorios que sean necesarios, tales como caminos de acceso, nivelaciones, cerramientos, etc., siempre que no estén medidos o valorados en el Presupuesto.

Los criterios a seguir para la medición y valoración de estas actividades serán los que aparecen en los enunciados de las partidas correspondientes, en los que quedan definidas tanto la unidad geométrica del elemento a ejecutar, las características del mismo, el/los medios mecánicos que se han de utilizar, las inclusiones o exclusiones y el criterio para medir, aspectos todos ellos que influyen en el cálculo del precio descompuesto.

Adecuación v	, Mei	ora del	Sendero	Río	Molinos	SL-A	148 -	Bavárcal
1 Idecuacion	/ 1110	ora ucr	Deliacio	1/10	WIOIIIOS	DL-11	170	Dayarcar

4. ESTUDIO BÁSICO DE SEGURIDAD Y SALUD

ÍNDICE

1. MEMORIA

- 1.1. Consideraciones preliminares: justificación, objeto y contenido
 - 1.1.1. Justificación
 - 1.1.2. Objeto
 - 1.1.3. Contenido del EBSS
- 1.2. Datos generales
 - 1.2.1. Agentes
 - 1.2.2. Características generales del Proyecto de Ejecución
 - 1.2.3. Emplazamiento y condiciones del entorno
 - 1.2.4. Características generales de la obra
- 1.3. Medios de auxilio
 - 1.3.1. Medios de auxilio en obra
 - 1.3.2. Medios de auxilio en caso de accidente: centros asistenciales más próximos
- 1.4. Instalaciones de higiene y bienestar de los trabajadores
 - 1.4.1. Vestuarios
 - 1.4.2. Aseos
 - 1.4.3. Comedor
- 1.5. Identificación de riesgos y medidas preventivas a adoptar
 - 1.5.1. Durante los trabajos previos a la ejecución de la obra
 - 1.5.2. Durante las fases de ejecución de la obra
 - 1.5.3. Durante la utilización de medios auxiliares.
 - 1.5.4. Durante la utilización de maquinaria y herramientas
- 1.6. I dentificación de los riesgos laborales evitables
 - 1.6.1. Caídas al mismo nivel
 - 1.6.2. Caídas a distinto nivel.
 - 1.6.3. Polvo y partículas
 - 1.6.4. Ruido
 - 1.6.5. Esfuerzos
 - 1.6.6. Incendios
 - 1.6.7. Intoxicación por emanaciones
- 1.7. Relación de los riesgos laborales que no pueden eliminarse
 - 1.7.1. Caída de objetos
 - 1.7.2. Dermatosis
 - 1.7.3. Electrocuciones
 - 1.7.4. Quemaduras
 - 1.7.5. Golpes y cortes en extremidades
- 1.8. Condiciones de seguridad y salud, en trabajos posteriores de reparación y mantenimiento
 - 1.8.1. Trabajos en cerramientos exteriores y cubiertas
 - 1.8.2. Trabajos en instalaciones
 - 1.8.3. Trabajos con pinturas y barnices
- 1.9. Trabajos que implican riesgos especiales
- 1.10. Medidas en caso de emergencia
- 1.11. Presencia de los recursos preventivos del contratista
- 2. NORMATI VA Y LEGI SLACI ÓN APLI CABLES.
 - 2.1. Y. Seguridad y salud

Anejos a la Memoria Estudio Básico de Seguridad y Salud

- 2.1.1. YC. Sistemas de protección colectiva
- 2.1.2. YI. Equipos de protección individual
- 2.1.3. YM. Medicina preventiva y primeros auxilios
- 2.1.4. YP. Instalaciones provisionales de higiene y bienestar
- 2.1.5. YS. Señalización provisional de obras

3. PLIEGO

- 3.1. Pliego de cláusulas administrativas
 - 3.1.1. Disposiciones generales
 - 3.1.2. Disposiciones facultativas
 - 3.1.3. Formación en Seguridad
 - 3.1.4. Reconocimientos médicos
 - 3.1.5. Salud e higiene en el trabajo
 - 3.1.6. Documentación de obra
 - 3.1.7. Disposiciones Económicas
- 3.2. Pliego de condiciones técnicas particulares
 - 3.2.1. Medios de protección colectiva
 - 3.2.2. Medios de protección individual
 - 3.2.3. Instalaciones provisionales de salud y confort

Anejos a la Memoria Estudio Básico de Seguridad y Salud

1. Memoria

1.1. Consideraciones preliminares: justificación, objeto y contenido

1.1.1. Justificación

La obra proyectada requiere la redacción de un Estudio Básico de Seguridad y Salud, ya que se cumplen las siguientes condiciones:

- a) El presupuesto de ejecución por contrata incluido en el proyecto es inferior a 450.760,00 euros.
- b) No se cumple que la duración estimada sea superior a 30 días laborables, empleándose en algún momento a más de 20 trabajadores simultáneamente.
- c) El volumen estimado de mano de obra, entendiéndose por tal la suma de los días de trabajo del total de los trabajadores en la obra, no es superior a 500 días.
- d) No se trata de una obra de túneles, galerías, conducciones subterráneas o presas.

1.1.2. Objeto

En el presente Estudio Básico de Seguridad y Salud se definen las medidas a adoptar encaminadas a la prevención de los riesgos de accidente y enfermedades profesionales que pueden ocasionarse durante la ejecución de la obra, así como las instalaciones preceptivas de higiene y bienestar de los trabajadores.

Se exponen unas directrices básicas de acuerdo con la legislación vigente, en cuanto a las disposiciones mínimas en materia de seguridad y salud, con el fin de que el contratista cumpla con sus obligaciones en cuanto a la prevención de riesgos profesionales.

Los objetivos que pretende alcanzar el presente Estudio Básico de Seguridad y Salud son:

- Garantizar la salud e integridad física de los trabajadores
- Evitar acciones o situaciones peligrosas por improvisación, o por insuficiencia o falta de medios
- Delimitar y esclarecer atribuciones y responsabilidades en materia de seguridad de las personas que intervienen en el proceso constructivo
- Determinar los costes de las medidas de protección y prevención
- Referir la clase de medidas de protección a emplear en función del riesgo
- Detectar a tiempo los riesgos que se derivan de la ejecución de la obra
- Aplicar técnicas de ejecución que reduzcan al máximo estos riesgos

1.1.3. Contenido del EBSS

El Estudio Básico de Seguridad y Salud precisa las normas de seguridad y salud aplicables a la obra, contemplando la identificación de los riesgos laborales que puedan ser evitados, indicando las medidas técnicas necesarias para ello, así como la relación de los riesgos laborales que no puedan eliminarse, especificando las medidas preventivas y protecciones técnicas tendentes a controlar y reducir dichos riesgos y valorando su eficacia, en especial cuando se propongan medidas alternativas, además de cualquier otro tipo de actividad que se lleve a cabo en la misma.

En el Estudio Básico de Seguridad y Salud se contemplan también las previsiones y las informaciones útiles para efectuar en su día, en las debidas condiciones de seguridad y salud, los previsibles trabajos posteriores de reparación o mantenimiento, siempre dentro del marco de la Ley de Prevención de Riesgos Laborales.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

1.2. Datos generales

1.2.1. Agentes

Entre los agentes que intervienen en materia de seguridad y salud en la obra objeto del presente estudio, se reseñan:

- Promotor: Ayuntamiento de Bayárcal
- Autor del proyecto: José Antonio Sánchez Hernández
- Constructor Jefe de obra: Se desconoce
- Coordinador de seguridad y salud: Se desconoce

1.2.2. Características generales del Proyecto de Ejecución

De la información disponible en la fase de proyecto básico y de ejecución, se aporta aquella que se considera relevante y que puede servir de ayuda para la redacción del plan de seguridad y salud.

- Denominación del proyecto: Adecuación y Mejora del Sendero Río Molinos SL-A 148 Bayárcal
- Plantas sobre rasante:
- Plantas bajo rasante:
- Presupuesto de ejecución material: 70.939,17€
- Plazo de ejecución: 6 meses
- Núm. máx. operarios: 4

1.2.3. Emplazamiento y condiciones del entorno

En el presente apartado se especifican, de forma resumida, las condiciones del entorno a considerar para la adecuada evaluación y delimitación de los riesgos que pudieran causar.

- Dirección: Sendero de Los Molinos SL-A-148, Bayárcal, Almería, Bayárcal (Almería)
- Accesos a la obra: Sendero de Los Molinos SL-A-148, Bayárcal, Almería.
- Topografía del terreno: Accidentada
- Edificaciones colindantes:
- Servidumbres y condicionantes:
- Condiciones climáticas y ambientales: Al aire libre

Durante los periodos en los que se produzca entrada y salida de vehículos se señalizará convenientemente el acceso de los mismos, tomándose todas las medidas oportunas establecidas por la Dirección General de Tráfico y por la Policía Local, para evitar posibles accidentes de circulación.

Se conservarán los bordillos y el pavimento de las aceras colindantes, causando el mínimo deterioro posible y reponiendo, en cualquier caso, aquellas unidades en las que se aprecie algún desperfecto.

1.2.4. Características generales de la obra

Descripción de las características de las unidades de la obra que pueden influir en la previsión de los riesgos laborales:

Anejos a la Memoria Estudio Básico de Seguridad y Salud

1.2.4.1. Estructura de contención

Ejecución de mampostería concertada 1 cara vista, considerando mampuestos irregulares en bruto, colocados con mortero de cemento, incluso preparación de piedras, asiento y rejuntado con mortero de cemento, completamente terminado. En muros de hasta 50 cm de espesor y hasta 2 m de altura. No se incluye el suministro, transporte de la piedra ni medios auxiliares

1.2.4.2. Estructura horizontal

Construcción de pasarela peatonal de madera de pino, tratada en autoclave nivel IV para su uso en exteriores. Comprende el suministro, transporte y montaje de la estructura principal de la pasarela, incluyendo tableros, barandillas y todos los elementos necesarios para su correcta ejecución. Asimismo, se incluyen los trabajos de cimentación y la construcción de los muros de mampostería de apoyo, garantizando la estabilidad, durabilidad y seguridad de la obra

1.3. Medios de auxilio

La evacuación de heridos a los centros sanitarios se llevará a cabo exclusivamente por personal especializado, en ambulancia. Tan solo los heridos leves podrán trasladarse por otros medios, siempre con el consentimiento y bajo la supervisión del responsable de emergencias de la obra.

Se dispondrá en lugar visible de la obra un cartel con los teléfonos de urgencias y de los centros sanitarios más próximos.

1.3.1. Medios de auxilio en obra

En la obra se dispondrá de un armario botiquín portátil modelo B con destino a empresas de 5 a 25 trabajadores, en un lugar accesible a los operarios y debidamente equipado.

Su contenido mínimo será:

- Desinfectantes y antisépticos autorizados
- Gasas estériles
- Algodón hidrófilo
- Vendas
- Esparadrapo
- Apósitos adhesivos
- Tijeras
- Pinzas y guantes desechables

El responsable de emergencias revisará periódicamente el material de primeros auxilios, reponiendo los elementos utilizados y sustituyendo los productos caducados.

1.3.2. Medios de auxilio en caso de accidente: centros asistenciales más próximos

Se aporta la información de los centros sanitarios más próximos a la obra, que puede ser de gran utilidad si se llegara a producir un accidente laboral.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

NI VEL ASI STENCI AL	NOMBRE, EMPLAZAMIENTO Y TELÉFONO	DISTANCIA APROX. (KM)
Primeros auxilios	Botiquín portátil	En la obra
	Consultorio de Canjayar Calle Real 28. 04450 Canjáyar 950 105 376	59,00 km
	Hospital Universitario Poniente Diseminado Ctra Almerimar, 31, 04700 El Ejido, Almería 112	65,00 km

La distancia al centro asistencial más próximo Calle Real 28. 04450 Canjáyar se estima en 177 minutos, en condiciones normales de tráfico.

1.4. Instalaciones de higiene y bienestar de los trabajadores

Los servicios higiénicos de la obra cumplirán las "Disposiciones mínimas generales relativas a los lugares de trabajo en las obras" contenidas en la legislación vigente en la materia.

Dadas las características y el volumen de la obra, se ha previsto la colocación de instalaciones provisionales tipo caseta prefabricada para los vestuarios y aseos, pudiéndose habilitar posteriormente zonas en la propia obra para albergar dichos servicios, cuando las condiciones y las fases de ejecución lo permitan.

1.4.1. Vestuarios

Los vestuarios dispondrán de una superficie total de 2,0 m² por cada trabajador que deba utilizarlos simultáneamente, incluyendo bancos y asientos suficientes, además de taquillas dotadas de llave y con la capacidad necesaria para guardar la ropa y el calzado.

1.4.2. Aseos

La dotación mínima prevista para los aseos es de:

- 1 ducha por cada 10 trabajadores o fracción que trabajen simultáneamente en la obra
- 1 retrete por cada 25 hombres o fracción y 1 por cada 15 mujeres o fracción
- 1 lavabo por cada retrete
- 1 urinario por cada 25 hombres o fracción
- 1 secamanos de celulosa o eléctrico por cada lavabo
- 1 jabonera dosificadora por cada lavabo
- 1 recipiente para recogida de celulosa sanitaria
- 1 portarrollos con papel higiénico por cada inodoro

1.4.3. Comedor

La zona destinada a comedor tendrá una altura mínima de 2,5 m, dispondrá de fregaderos de agua potable para la limpieza de los utensilios y la vajilla, estará equipada con mesas y asientos, y tendrá una provisión suficiente de vasos, platos y cubiertos, preferentemente desechables.

1.5. I dentificación de riesgos y medidas preventivas a adoptar

A continuación se expone la relación de los riesgos más frecuentes que pueden surgir durante las distintas fases de la obra, con las medidas preventivas y de protección colectiva a adoptar con el fin de eliminar o

Anejos a la Memoria Estudio Básico de Seguridad y Salud

reducir al máximo dichos riesgos, así como los equipos de protección individual (EPI) imprescindibles para mejorar las condiciones de seguridad y salud en la obra.

Riesgos generales más frecuentes

- Caída de objetos y/o materiales al mismo o a distinto nivel
- Desprendimiento de cargas suspendidas.
- Exposición a temperaturas ambientales extremas.
- Exposición a vibraciones y ruido.
- Cortes y golpes en la cabeza y extremidades.
- Cortes y heridas con objetos punzantes
- Sobreesfuerzos, movimientos repetitivos o posturas inadecuadas.
- Electrocuciones por contacto directo o indirecto
- Dermatosis por contacto con yesos, escayola, cemento, pinturas, pegamentos, etc.
- Intoxicación por inhalación de humos y gases

Medidas preventivas y protecciones colectivas de carácter general

- La zona de trabajo permanecerá ordenada, libre de obstáculos, limpia y bien iluminada.
- Se colocarán carteles indicativos de las medidas de seguridad en lugares visibles de la obra
- Se prohibirá la entrada a toda persona ajena a la obra.
- Los recursos preventivos de la obra tendrán presencia permanente en aquellos trabajos que entrañen mayores riesgos.
- Las operaciones que entrañen riesgos especiales se realizarán bajo la supervisión de una persona cualificada, debidamente instruida.
- Se suspenderán los trabajos en caso de tormenta y cuando llueva con intensidad o la velocidad del viento sea superior a 50 km/h.
- Cuando las temperaturas sean extremas, se evitará, en la medida de lo posible, trabajar durante las horas de mayor insolación.
- La carga y descarga de materiales se realizará con precaución y cautela, preferentemente por medios mecánicos, evitando movimientos bruscos que provoquen su caída
- La manipulación de los elementos pesados se realizará por personal cualificado, utilizando medios mecánicos o palancas, para evitar sobreesfuerzos innecesarios.
- Ante la existencia de líneas eléctricas aéreas, se guardarán las distancias mínimas preventivas, en función de su intensidad y voltaje.
- No se realizará ningún trabajo dentro del radio de acción de las máquinas o vehículos
- Los operarios no desarrollarán trabajos, ni permanecerán, debajo de cargas suspendidas.
- Se evitarán o reducirán al máximo los trabajos en altura.
- Se utilizarán escaleras normalizadas, sujetas firmemente, para el descenso y ascenso a las zonas excavadas
- Los huecos horizontales y los bordes de los forjados se protegerán mediante la colocación de barandillas o redes homologadas
- Dentro del recinto de la obra, los vehículos y máquinas circularán a una velocidad reducida, inferior a 20 km/h

Equipos de protección individual (EPI) a utilizar en las distintas fases de ejecución de la obra

- Casco de seguridad homologado.
- Casco de seguridad con barboquejo.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

- Cinturón de seguridad con dispositivo anticaída.
- Cinturón portaherramientas
- Guantes de goma
- Guantes de cuero.
- Guantes aislantes
- Calzado con puntera reforzada
- Calzado de seguridad con suela aislante y anticlavos.
- Botas de caña alta de goma
- Mascarilla con filtro mecánico para el corte de ladrillos con sierra
- Ropa de trabajo impermeable.
- Faja antilumbago.
- Gafas de seguridad antiimpactos
- Protectores auditivos.

1.5.1. Durante los trabajos previos a la ejecución de la obra

Se expone la relación de los riesgos más frecuentes que pueden surgir en los trabajos previos a la ejecución de la obra, con las medidas preventivas, protecciones colectivas y equipos de protección individual (EPI), específicos para dichos trabajos.

1.5.1.1. I nstalación eléctrica provisional

Riesgos más frecuentes

- Electrocuciones por contacto directo o indirecto
- Cortes y heridas con objetos punzantes
- Proyección de partículas en los ojos
- Incendios

Medidas preventivas y protecciones colectivas:

- Prevención de posibles contactos eléctricos indirectos, mediante el sistema de protección de puesta a tierra y dispositivos de corte (interruptores diferenciales)
- Se respetará una distancia mínima a las líneas de alta tensión de 6 m para las líneas aéreas y de 2 m para las líneas enterradas
- Se comprobará que el trazado de la línea eléctrica no coincide con el del suministro de agua
- Se ubicarán los cuadros eléctricos en lugares accesibles, dentro de cajas prefabricadas homologadas, con su toma de tierra independiente, protegidas de la intemperie y provistas de puerta, llave y visera
- Se utilizarán solamente conducciones eléctricas antihumedad y conexiones estancas
- En caso de tender líneas eléctricas sobre zonas de paso, se situarán a una altura mínima de 2,2 m si se ha dispuesto algún elemento para impedir el paso de vehículos y de 5,0 m en caso contrario
- Los cables enterrados estarán perfectamente señalizados y protegidos con tubos rígidos, a una profundidad superior a 0,4 m
- Las tomas de corriente se realizarán a través de clavijas blindadas normalizadas
- Quedan terminantemente prohibidas las conexiones triples (ladrones) y el empleo de fusibles caseros, empleándose una toma de corriente independiente para cada aparato o herramienta

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Equipos de protección individual (EPI):

- Calzado aislante para electricistas
- Guantes dieléctricos.
- Banquetas aislantes de la electricidad.
- Comprobadores de tensión.
- · Herramientas aislantes.
- Ropa de trabajo impermeable.
- Ropa de trabajo reflectante.

1.5.1.2. Vallado de obra

Riesgos más frecuentes

- Cortes y heridas con objetos punzantes
- Proyección de fragmentos o de partículas
- Exposición a temperaturas ambientales extremas.
- Exposición a vibraciones y ruido.

Medidas preventivas y protecciones colectivas:

- Se prohibirá el aparcamiento en la zona destinada a la entrada de vehículos a la obra
- Se retirarán los clavos y todo el material punzante resultante del vallado
- Se localizarán las conducciones que puedan existir en la zona de trabajo, previamente a la excavación

Equipos de protección individual (EPI):

- Calzado con puntera reforzada
- Guantes de cuero.
- Ropa de trabajo reflectante.

1.5.2. Durante las fases de ejecución de la obra

1.5.2.1. Cimentación

Riesgos más frecuentes

- Inundaciones o filtraciones de agua
- Vuelcos, choques y golpes provocados por la maquinaria o por vehículos

Medidas preventivas y protecciones colectivas:

- Se colocarán protectores homologados en las puntas de las armaduras de espera
- El transporte de las armaduras se efectuará mediante eslingas, enlazadas y provistas de ganchos con pestillos de seguridad
- Se retirarán los clavos sobrantes y los materiales punzantes

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Equipos de protección individual (EPI):

- Guantes homologados para el trabajo con hormigón
- Guantes de cuero para la manipulación de las armaduras
- Botas de goma de caña alta para hormigonado
- Botas de seguridad con plantillas de acero y antideslizantes

1.5.2.2. Estructura

Riesgos más frecuentes

- Desprendimientos de los materiales de encofrado por apilado incorrecto
- Caída del encofrado al vacío durante las operaciones de desencofrado
- Cortes al utilizar la sierra circular de mesa o las sierras de mano

Medidas preventivas y protecciones colectivas:

- Se protegerá la vía pública con una visera de protección formada por ménsula y entablado
- Los huecos horizontales y los bordes de los forjados se protegerán mediante la colocación de barandillas o redes homologadas

Equipos de protección individual (EPI):

- Cinturón de seguridad con dispositivo anticaída.
- Guantes homologados para el trabajo con hormigón
- Guantes de cuero para la manipulación de las armaduras
- Botas de goma de caña alta para hormigonado
- Botas de seguridad con plantillas de acero y antideslizantes

1.5.2.3. Cerramientos y revestimientos exteriores

Riesgos más frecuentes

- Caída de objetos o materiales desde distinto nivel.
- Exposición a temperaturas ambientales extremas.
- Afecciones cutáneas por contacto con morteros, yeso, escayola o materiales aislantes

Medidas preventivas y protecciones colectivas:

- Marquesinas para la protección frente a la caída de objetos
- No retirada de las barandillas antes de la ejecución del cerramiento

Equipos de protección individual (EPI):

• Uso de mascarilla con filtro mecánico para el corte de ladrillos con sierra

Anejos a la Memoria Estudio Básico de Seguridad y Salud

1.5.2.4. Cubiertas

Riesgos más frecuentes

• Caída por los bordes de cubierta o deslizamiento por los faldones

Medidas preventivas y protecciones colectivas:

- El acopio de los materiales de cubierta se realizará en zonas alejadas de los bordes o aleros, y fuera de las zonas de circulación, preferentemente sobre vigas o soportes
- El acceso a la cubierta se realizará mediante escaleras de mano homologadas, ubicadas en huecos protegidos y apoyadas sobre superficies horizontales, sobrepasando 1,0 m la altura de desembarque
- Se instalarán anclajes en la cumbrera para amarrar los cables y/o los cinturones de seguridad

Equipos de protección individual (EPI):

- Calzado con suela antideslizante
- Ropa de trabajo impermeable.
- Cinturón de seguridad con dispositivo anticaída.

1.5.2.5. Particiones

Riesgos más frecuentes

- Caída de objetos y/o materiales al mismo o a distinto nivel
- Exposición a vibraciones y ruido.
- Cortes y golpes en la cabeza y extremidades.
- Cortes y heridas con objetos punzantes
- Sobreesfuerzos, movimientos repetitivos o posturas inadecuadas.
- Dermatosis por contacto con yesos, escayola, cemento, pinturas, pegamentos, etc.

Medidas preventivas y protecciones colectivas:

- Se evitarán o reducirán al máximo los trabajos en altura.
- Se utilizarán escaleras normalizadas, sujetas firmemente, para el descenso y ascenso a las zonas excavadas
- El acopio de los materiales de cubierta se realizará en zonas alejadas de los bordes o aleros, y fuera de las zonas de circulación, preferentemente sobre vigas o soportes
- Los huecos horizontales y los bordes de los forjados se protegerán mediante la colocación de barandillas o redes homologadas

Equipos de protección individual (EPI):

- Casco de seguridad homologado.
- Cinturón portaherramientas
- Guantes de cuero.
- Calzado con puntera reforzada

Anejos a la Memoria Estudio Básico de Seguridad y Salud

- Mascarilla con filtro mecánico para el corte de ladrillos con sierra
- Faja antilumbago.
- Gafas de seguridad antiimpactos
- Protectores auditivos.

1.5.2.6. Instalaciones en general

Riesgos más frecuentes

- Electrocuciones por contacto directo o indirecto
- Quemaduras producidas por descargas eléctricas
- Intoxicación por vapores procedentes de la soldadura
- Incendios y explosiones

Medidas preventivas y protecciones colectivas:

- El personal encargado de realizar trabajos en instalaciones estará formado y adiestrado en el empleo del material de seguridad y de los equipos y herramientas específicas para cada labor
- Se utilizarán solamente lámparas portátiles homologadas, con manguera antihumedad y clavija de conexión normalizada, alimentadas a 24 voltios
- Se utilizarán herramientas portátiles con doble aislamiento

Equipos de protección individual (EPI):

- Guantes aislantes en pruebas de tensión
- Calzado con suela aislante ante contactos eléctricos
- Banquetas aislantes de la electricidad.
- Comprobadores de tensión.
- · Herramientas aislantes.

1.5.3. Durante la utilización de medios auxiliares.

La prevención de los riesgos derivados de la utilización de los medios auxiliares de la obra se realizará atendiendo a la legislación vigente en la materia.

En ningún caso se admitirá la utilización de andamios o escaleras de mano que no estén normalizados y cumplan con la normativa vigente.

En el caso de las plataformas de descarga de materiales, sólo se utilizarán modelos normalizados, disponiendo de barandillas homologadas y enganches para cinturón de seguridad, entre otros elementos.

Relación de medios auxiliares previstos en la obra con sus respectivas medidas preventivas y protecciones colectivas:

1.5.3.1. Puntales

 No se retirarán los puntales, ni se modificará su disposición una vez hayan entrado en carga, respetándose el periodo estricto de desencofrado.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

- Los puntales no quedarán dispersos por la obra, evitando su apoyo en posición inclinada sobre los paramentos verticales, acopiándose siempre cuando dejen de utilizarse.
- Los puntales telescópicos se transportarán con los mecanismos de extensión bloqueados.

1.5.3.2. Torre de hormigonado

- Se colocará, en un lugar visible al pie de la torre de hormigonado, un cartel que indique "Prohibido el acceso a toda persona no autorizada".
- Las torres de hormigonado permanecerán protegidas perimetralmente mediante barandillas homologadas, con rodapié, con una altura igual o superior a 0,9 m.
- No se permitirá la presencia de personas ni de objetos sobre las plataformas de las torres de hormigonado durante sus cambios de posición.
- En el hormigonado de los pilares de esquina, las torres de hormigonado se ubicarán con la cara de trabajo situada perpendicularmente a la diagonal interna del pilar, con el fin de lograr la posición más segura y eficaz.

1.5.3.3. Escalera de mano

- Se revisará periódicamente el estado de conservación de las escaleras.
- Dispondrán de zapatas antideslizantes o elementos de fijación en la parte superior o inferior de los largueros.
- Se transportarán con el extremo delantero elevado, para evitar golpes a otros objetos o a personas.
- Se apoyarán sobre superficies horizontales, con la planeidad adecuada para que sean estables e inmóviles, quedando prohibido el uso como cuña de cascotes, ladrillos, bovedillas o elementos similares.
- Los travesaños quedarán en posición horizontal y la inclinación de la escalera será inferior al 75% respecto al plano horizontal.
- El extremo superior de la escalera sobresaldrá 1,0 m de la altura de desembarque, medido en la dirección vertical.
- El operario realizará el ascenso y descenso por la escalera en posición frontal (mirando los peldaños), sujetándose firmemente con las dos manos en los peldaños, no en los largueros.
- Se evitará el ascenso o descenso simultáneo de dos o más personas.
- Cuando se requiera trabajar sobre la escalera en alturas superiores a 3,5 m, se utilizará siempre el cinturón de seguridad con dispositivo anticaída.

1.5.3.4. Andamio de borriquetas

- Los andamios de borriquetas se apoyarán sobre superficies firmes, estables y niveladas.
- Se empleará un mínimo de dos borriquetas para la formación de andamios, quedando totalmente prohibido como apoyo el uso de bidones, ladrillos, bovedillas u otros objetos.
- Las plataformas de trabajo estarán perfectamente ancladas a las borriquetas.
- Queda totalmente prohibido instalar un andamio de borriquetas encima de otro.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

1.5.4. Durante la utilización de maquinaria y herramientas

Las medidas preventivas a adoptar y las protecciones a emplear para el control y la reducción de riesgos debidos a la utilización de maquinaria y herramientas durante la ejecución de la obra se desarrollarán en el correspondiente Plan de Seguridad y Salud, conforme a los siguientes criterios:

- a) Todas las máquinas y herramientas que se utilicen en la obra dispondrán de su correspondiente manual de instrucciones, en el que estarán especificados claramente tanto los riesgos que entrañan para los trabajadores como los procedimientos para su utilización con la debida seguridad.
- b) No se aceptará la utilización de ninguna máquina, mecanismo o artificio mecánico sin reglamentación específica.

Relación de máquinas y herramientas que está previsto utilizar en la obra, con sus correspondientes medidas preventivas y protecciones colectivas:

1.5.4.1. Pala cargadora

- Para realizar las tareas de mantenimiento, se apoyará la cuchara en el suelo, se parará el motor, se conectará el freno de estacionamiento y se bloqueará la máquina.
- Queda prohibido el uso de la cuchara como grúa o medio de transporte.
- La extracción de tierras se efectuará en posición frontal a la pendiente
- El transporte de tierras se realizará con la cuchara en la posición más baja posible, para garantizar la estabilidad de la pala

1.5.4.2. Retroexcavadora

- Para realizar las tareas de mantenimiento, se apoyará la cuchara en el suelo, se parará el motor, se conectará el freno de estacionamiento y se bloqueará la máquina.
- Queda prohibido el uso de la cuchara como grúa o medio de transporte.
- Los desplazamientos de la retroexcavadora se realizarán con la cuchara apoyada sobre la máquina en el sentido de la marcha.
- Los cambios de posición de la cuchara en superficies inclinadas se realizarán por la zona de mayor altura.
- Se prohibirá la realización de trabajos dentro del radio de acción de la máquina.

1.5.4.3. Camión de caja basculante

- Las maniobras del camión serán dirigidas por un señalista de tráfico.
- Se comprobará que el freno de mano está activado antes de la puesta en marcha del motor, al abandonar el vehículo y durante las operaciones de carga y descarga.
- No se circulará con la caja izada después de la descarga.

1.5.4.4. Camión para transporte

- Las maniobras del camión serán dirigidas por un señalista de tráfico.
- Las cargas se repartirán uniformemente en la caja, evitando acopios con pendientes superiores al 5% y protegiendo los materiales sueltos con una lona

Anejos a la Memoria Estudio Básico de Seguridad y Salud

- Antes de proceder a las operaciones de carga y descarga, se colocará el freno en posición de frenado y, en caso de estar situado en pendiente, calzos de inmovilización debajo de las ruedas
- En las operaciones de carga y descarga se evitarán movimientos bruscos que provoquen la pérdida de estabilidad, permaneciendo siempre el conductor fuera de la cabina

1.5.4.5. Camión grúa

- El conductor accederá al vehículo descenderá del mismo con el motor apagado, en posición frontal, evitando saltar al suelo y haciendo uso de los peldaños y asideros.
- Se cuidará especialmente de no sobrepasar la carga máxima indicada por el fabricante.
- La cabina dispondrá de botiquín de primeros auxilios y de extintor timbrado y revisado.
- Los vehículos dispondrán de bocina de retroceso.
- Se comprobará que el freno de mano está activado antes de la puesta en marcha del motor, al abandonar el vehículo y durante las operaciones de elevación.
- La elevación se realizará evitando operaciones bruscas, que provoquen la pérdida de estabilidad de la carga.

1.5.4.6. Hormigonera

- Las operaciones de mantenimiento serán realizadas por personal especializado, previa desconexión de la energía eléctrica
- La hormigonera tendrá un grado de protección IP-55
- Su uso estará restringido sólo a personas autorizadas
- Dispondrá de freno de basculamiento del bombo
- Los conductos de alimentación eléctrica de la hormigonera estarán conectados a tierra, asociados a un disyuntor diferencial
- Las partes móviles del aparato deberán permanecer siempre protegidas mediante carcasas conectadas a tierra
- No se ubicarán a distancias inferiores a tres metros de los bordes de excavación y/o de los bordes de los forjados

1.5.4.7. Vibrador

- La operación de vibrado se realizará siempre desde una posición estable
- La manguera de alimentación desde el cuadro eléctrico estará protegida cuando discurra por zonas de paso
- Tanto el cable de alimentación como su conexión al transformador estarán en perfectas condiciones de estanqueidad y aislamiento
- Los operarios no efectuarán el arrastre del cable de alimentación colocándolo alrededor del cuerpo. Si es necesario, esta operación se realizará entre dos operarios
- El vibrado del hormigón se realizará desde plataformas de trabajo seguras, no permaneciendo en ningún momento el operario sobre el encofrado ni sobre elementos inestables
- Nunca se abandonará el vibrador en funcionamiento, ni se desplazará tirando de los cables

Anejos a la Memoria Estudio Básico de Seguridad y Salud

• Para las vibraciones transmitidas al sistema mano-brazo, el valor de exposición diaria normalizado para un período de referencia de ocho horas, no superará 2,5 m/s², siendo el valor límite de 5 m/s²

1.5.4.8. Martillo picador

- Las mangueras de aire comprimido deben estar situadas de forma que no dificulten ni el trabajo de los operarios ni el paso del personal.
- No se realizarán ni esfuerzos de palanca ni operaciones similares con el martillo en marcha.
- Se verificará el perfecto estado de los acoplamientos de las mangueras.
- Se cerrará el paso del aire antes de desarmar un martillo.

1.5.4.9. Maquinillo

- Será utilizado exclusivamente por la persona debidamente autorizada.
- El trabajador que utilice el maquinillo estará debidamente formado en su uso y manejo, conocerá el contenido del manual de instrucciones, las correctas medidas preventivas a adoptar y el uso de los EPI necesarios.
- Previamente al inicio de cualquier trabajo, se comprobará el estado de los accesorios de seguridad, del cable de suspensión de cargas y de las eslingas.
- Se comprobará la existencia del limitador de recorrido que impide el choque de la carga contra el extremo superior de la pluma.
- Dispondrá de marcado CE, de declaración de conformidad y de manual de instrucciones emitido por el fabricante.
- Quedará claramente visible el cartel que indica el peso máximo a elevar.
- Se acotará la zona de la obra en la que exista riesgo de caída de los materiales transportados por el maquinillo.
- Se revisará el cable a diario, siendo obligatoria su sustitución cuando el número de hilos rotos sea igual o superior al 10% del total
- El anclaje del maquinillo se realizará según se indica en el manual de instrucciones del fabricante
- El arriostramiento nunca se hará con bidones llenos de agua, de arena u de otro material.
- Se realizará el mantenimiento previsto por el fabricante.

1.5.4.10. Sierra circular

- Su uso está destinado exclusivamente al corte de elementos o piezas de la obra
- Para el corte de materiales cerámicos o pétreos se emplearán discos abrasivos y para elementos de madera discos de sierra.
- Deberá existir un interruptor de parada cerca de la zona de mando.
- La zona de trabajo deberá estar limpia de serrín y de virutas, para evitar posibles incendios.
- Las piezas a serrar no contendrán clavos ni otros elementos metálicos.
- El trabajo con el disco agresivo se realizará en húmedo.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

 No se utilizará la sierra circular sin la protección de prendas adecuadas, tales como mascarillas antipolvo y gafas.

1.5.4.11. Sierra circular de mesa

- Será utilizado exclusivamente por la persona debidamente autorizada.
- El trabajador que utilice la sierra circular estará debidamente formado en su uso y manejo, conocerá el contenido del manual de instrucciones, las correctas medidas preventivas a adoptar y el uso de los EPI necesarios
- Las sierras circulares se ubicarán en un lugar apropiado, sobre superficies firmes y secas, a distancias superiores a tres metros del borde de los forjados, salvo que éstos estén debidamente protegidos por redes, barandillas o petos de remate
- En los casos en que se superen los valores de exposición al ruido indicados en el artículo 51 del Real Decreto 286/06 de protección de los trabajadores frente al ruido, se establecerán las acciones correctivas oportunas, tales como el empleo de protectores auditivos
- La sierra estará totalmente protegida por la parte inferior de la mesa, de manera que no se pueda acceder al disco
- La parte superior de la sierra dispondrá de una carcasa metálica que impida el acceso al disco de sierra, excepto por el punto de introducción del elemento a cortar, y la proyección de partículas
- Se utilizará siempre un empujador para guiar el elemento a cortar, de modo que en ningún caso la mano quede expuesta al disco de la sierra
- La instalación eléctrica de la máquina estará siempre en perfecto estado y condiciones, comprobándose periódicamente el cableado, las clavijas y la toma de tierra
- Las piezas a serrar no contendrán clavos ni otros elementos metálicos.
- El operario se colocará a sotavento del disco, evitando la inhalación de polvo

1.5.4.12. Cortadora de material cerámico

- Se comprobará el estado del disco antes de iniciar cualquier trabajo. Si estuviera desgastado o resquebrajado se procederá a su inmediata sustitución
- la protección del disco y de la transmisión estará activada en todo momento
- No se presionará contra el disco la pieza a cortar para evitar el bloqueo

1.5.4.13. Equipo de soldadura

- No habrá materiales inflamables ni explosivos a menos de 10 metros de la zona de trabajo de soldadura.
- Antes de soldar se eliminarán las pinturas y recubrimientos del soporte
- Durante los trabajos de soldadura se dispondrá siempre de un extintor de polvo químico en perfecto estado y condiciones de uso, en un lugar próximo y accesible.
- En los locales cerrados en los que no se pueda garantizar una correcta renovación de aire se instalarán extractores, preferentemente sistemas de aspiración localizada.
- Se paralizarán los trabajos de soldadura en altura ante la presencia de personas bajo el área de trabajo.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

• Tanto los soldadores como los trabajadores que se encuentren en las inmediaciones dispondrán de protección visual adecuada, no permaneciendo en ningún caso con los ojos al descubierto.

1.5.4.14. Herramientas manuales diversas

- La alimentación de las herramientas se realizará a 24 V cuando se trabaje en ambientes húmedos o las herramientas no dispongan de doble aislamiento.
- El acceso a las herramientas y su uso estará permitido únicamente a las personas autorizadas.
- No se retirarán de las herramientas las protecciones diseñadas por el fabricante.
- Se prohibirá, durante el trabajo con herramientas, el uso de pulseras, relojes, cadenas y elementos similares.
- Las herramientas eléctricas dispondrán de doble aislamiento o estarán conectadas a tierra
- En las herramientas de corte se protegerá el disco con una carcasa antiproyección.
- Las conexiones eléctricas a través de clemas se protegerán con carcasas anticontactos eléctricos.
- Las herramientas se mantendrán en perfecto estado de uso, con los mangos sin grietas y limpios de residuos, manteniendo su carácter aislante para los trabajos eléctricos.
- Las herramientas eléctricas estarán apagadas mientras no se estén utilizando y no se podrán usar con las manos o los pies mojados.
- En los casos en que se superen los valores de exposición al ruido que establece la legislación vigente en materia de protección de los trabajadores frente al ruido, se establecerán las acciones correctivas oportunas, tales como el empleo de protectores auditivos.

1.6. I dentificación de los riesgos laborales evitables

En este apartado se reseña la relación de las medidas preventivas a adoptar para evitar o reducir el efecto de los riesgos más frecuentes durante la ejecución de la obra.

1.6.1. Caídas al mismo nivel

- La zona de trabajo permanecerá ordenada, libre de obstáculos, limpia y bien iluminada.
- Se habilitarán y balizarán las zonas de acopio de materiales.

1.6.2. Caídas a distinto nivel.

- Se dispondrán escaleras de acceso para salvar los desniveles.
- Los huecos horizontales y los bordes de los forjados se protegerán mediante barandillas y redes homologadas.
- Se mantendrán en buen estado las protecciones de los huecos y de los desniveles.
- Las escaleras de acceso quedarán firmemente sujetas y bien amarradas.

1.6.3. Polvo y partículas

- Se regará periódicamente la zona de trabajo para evitar el polvo.
- Se usarán gafas de protección y mascarillas antipolvo en aquellos trabajos en los que se genere polvo o partículas.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

1.6.4. Ruido

- Se evaluarán los niveles de ruido en las zonas de trabajo.
- Las máquinas estarán provistas de aislamiento acústico.
- Se dispondrán los medios necesarios para eliminar o amortiguar los ruidos.

1.6.5. Esfuerzos

- Se evitará el desplazamiento manual de las cargas pesadas.
- Se limitará el peso de las cargas en caso de desplazamiento manual.
- Se evitarán los sobreesfuerzos o los esfuerzos repetitivos.
- Se evitarán las posturas inadecuadas o forzadas en el levantamiento o desplazamiento de cargas.

1.6.6. Incendios

• No se fumará en presencia de materiales fungibles ni en caso de existir riesgo de incendio.

1.6.7. Intoxicación por emanaciones

- Los locales y las zonas de trabajo dispondrán de ventilación suficiente.
- Se utilizarán mascarillas y filtros apropiados.

1.7. Relación de los riesgos laborales que no pueden eliminarse

Los riesgos que difícilmente pueden eliminarse son los que se producen por causas inesperadas (como caídas de objetos y desprendimientos, entre otras). No obstante, pueden reducirse con el adecuado uso de las protecciones individuales y colectivas, así como con el estricto cumplimiento de la normativa en materia de seguridad y salud, y de las normas de la buena construcción.

1.7.1. Caída de objetos

Medidas preventivas y protecciones colectivas:

- Se montarán marquesinas en los accesos.
- La zona de trabajo permanecerá ordenada, libre de obstáculos, limpia y bien iluminada.
- Se evitará el amontonamiento de materiales u objetos sobre los andamios.
- No se lanzarán cascotes ni restos de materiales desde los andamios.

Equipos de protección individual (EPI):

- Casco de seguridad homologado.
- Guantes y botas de seguridad.
- Uso de bolsa portaherramientas.

1.7.2. Dermatosis

Medidas preventivas y protecciones colectivas:

• Se evitará la generación de polvo de cemento.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Equipos de protección individual (EPI):

• Guantes y ropa de trabajo adecuada.

1.7.3. Electrocuciones

Medidas preventivas y protecciones colectivas:

- Se revisará periódicamente la instalación eléctrica.
- El tendido eléctrico quedará fijado a los paramentos verticales.
- Los alargadores portátiles tendrán mango aislante.
- La maquinaria portátil dispondrá de protección con doble aislamiento.
- Toda la maquinaria eléctrica estará provista de toma de tierra.

Equipos de protección individual (EPI):

- Guantes dieléctricos.
- Calzado aislante para electricistas
- Banquetas aislantes de la electricidad.

1.7.4. Quemaduras

Medidas preventivas y protecciones colectivas:

• La zona de trabajo permanecerá ordenada, libre de obstáculos, limpia y bien iluminada.

Equipos de protección individual (EPI):

• Guantes, polainas y mandiles de cuero.

1.7.5. Golpes y cortes en extremidades

Medidas preventivas y protecciones colectivas:

• La zona de trabajo permanecerá ordenada, libre de obstáculos, limpia y bien iluminada.

Equipos de protección individual (EPI):

• Guantes y botas de seguridad.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

1.8. Condiciones de seguridad y salud, en trabajos posteriores de reparación y mantenimiento

En este apartado se aporta la información útil para realizar, en las debidas condiciones de seguridad y salud, los futuros trabajos de conservación, reparación y mantenimiento del edificio construido que entrañan mayores riesgos.

1.8.1. Trabajos en cerramientos exteriores y cubiertas

Para los trabajos en cerramientos, aleros de cubierta, revestimientos de paramentos exteriores o cualquier otro que se efectúe con riesgo de caída en altura, deberán utilizarse andamios que cumplan las condiciones especificadas en el presente Estudio Básico de Seguridad y Salud.

Durante los trabajos que puedan afectar a la vía pública, se colocará una visera de protección a la altura de la primera planta, para proteger a los transeúntes y a los vehículos de las posibles caídas de objetos.

1.8.2. Trabajos en instalaciones

Los trabajos correspondientes a las instalaciones de fontanería, eléctrica y de gas, deberán realizarse por personal cualificado, cumpliendo las especificaciones establecidas en su correspondiente Plan de Seguridad y Salud, así como en la normativa vigente en cada materia.

Antes de la ejecución de cualquier trabajo de reparación o de mantenimiento de los ascensores y montacargas, deberá elaborarse un Plan de Seguridad suscrito por un técnico competente en la materia.

1.8.3. Trabajos con pinturas y barnices

Los trabajos con pinturas u otros materiales cuya inhalación pueda resultar tóxica deberán realizarse con ventilación suficiente, adoptando los elementos de protección adecuados.

1.9. Trabajos que implican riesgos especiales

En la obra objeto del presente Estudio Básico de Seguridad y Salud concurren los riesgos especiales que suelen presentarse en la demolición de la estructura, cerramientos y cubiertas y en el propio montaje de las medidas de seguridad y de protección. Cabe destacar:

- Montaje de forjado, especialmente en los bordes perimetrales.
- Ejecución de cerramientos exteriores.
- Formación de los antepechos de cubierta.
- Colocación de horcas y redes de protección.
- Los huecos horizontales y los bordes de los forjados se protegerán mediante barandillas y redes homologadas.
- Disposición de plataformas voladas.
- Elevación y acople de los módulos de andamiaje para la ejecución de las fachadas.

1.10. Medidas en caso de emergencia

El contratista deberá reflejar en el correspondiente plan de seguridad y salud las posibles situaciones de emergencia, estableciendo las medidas oportunas en caso de primeros auxilios y designando para ello a personal con formación, que se hará cargo de dichas medidas.

Los trabajadores responsables de las medidas de emergencia tienen derecho a la paralización de su actividad, debiendo estar garantizada la adecuada administración de los primeros auxilios y, cuando la situación lo requiera, el rápido traslado del operario a un centro de asistencia médica.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

1.11. Presencia de los recursos preventivos del contratista

Dadas las características de la obra y los riesgos previstos en el presente Estudio Básico de Seguridad y Salud, cada contratista deberá asignar la presencia de sus recursos preventivos en la obra, según se establece en la legislación vigente en la materia.

A tales efectos, el contratista deberá concretar los recursos preventivos asignados a la obra con capacitación suficiente, que deberán disponer de los medios necesarios para vigilar el cumplimiento de las medidas incluidas en el correspondiente plan de seguridad y salud.

Dicha vigilancia incluirá la comprobación de la eficacia de las actividades preventivas previstas en dicho Plan, así como la adecuación de tales actividades a los riesgos que pretenden prevenirse o a la aparición de riesgos no previstos y derivados de la situación que determina la necesidad de la presencia de los recursos preventivos.

Si, como resultado de la vigilancia, se observa un deficiente cumplimiento de las actividades preventivas, las personas que tengan asignada la presencia harán las indicaciones necesarias para el correcto e inmediato cumplimiento de las actividades preventivas, debiendo poner tales circunstancias en conocimiento del empresario para que éste adopte las medidas oportunas para corregir las deficiencias observadas.

2. Normativa y legislación aplicables.

2.1. Y. Seguridad y salud

Ley de Prevención de Riesgos Laborales

Ley 31/1995, de 8 de noviembre, de la Jefatura del Estado.

B.O.E.: 10 de noviembre de 1995

Completada por:

Protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo

Real Decreto 665/1997, de 12 de mayo, del Ministerio de la Presidencia.

B.O.E.: 24 de mayo de 1997

Modificada por:

Ley de Medidas Fiscales, Administrativas y del Orden Social

Ley 50/1998, de 30 de diciembre, de la Jefatura del Estado.

Modificación de los artículos 45, 47, 48 y 49 de la Ley 31/1995.

B.O.E.: 31 de diciembre de 1998

Completada por:

Disposiciones mínimas de seguridad y salud en el trabajo en el ámbito de las empresas de trabajo temporal

Real Decreto 216/1999, de 5 de febrero, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 24 de febrero de 1999

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Completada por:

Protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 374/2001, de 6 de abril, del Ministerio de la Presidencia.

B.O.E.: 1 de mayo de 2001

Completada por:

Disposiciones mínimas para la protección de la salud y seguridad de los trabajadores frente al riesgo eléctrico

Real Decreto 614/2001, de 8 de junio, del Ministerio de la Presidencia.

B.O.E.: 21 de junio de 2001

Completada por:

Protección de la salud y la seguridad de los trabajadores expuestos a los riesgos derivados de atmósferas explosivas en el lugar de trabajo

Real Decreto 681/2003, de 12 de junio, del Ministerio de la Presidencia.

B.O.E.: 18 de junio de 2003

Modificada por:

Ley de reforma del marco normativo de la prevención de riesgos laborales

Ley 54/2003, de 12 de diciembre, de la Jefatura del Estado.

B.O.E.: 13 de diciembre de 2003

Desarrollada por:

Desarrollo del artículo 24 de la Ley 31/1995 de Prevención de Riesgos Laborales, en materia de coordinación de actividades empresariales

Real Decreto 171/2004, de 30 de enero, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 31 de enero de 2004

Completada por:

Protección de la salud y la seguridad de los trabajadores frente a los riesgos que puedan derivarse de la exposición a vibraciones mecánicas

Real Decreto 1311/2005, de 4 de noviembre, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 5 de noviembre de 2005

Completada por:

Protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido

Real Decreto 286/2006, de 10 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de marzo de 2006

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Completada por:

Disposiciones mínimas de seguridad y salud aplicables a los trabajos con riesgo de exposición al amianto

Real Decreto 396/2006, de 31 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de abril de 2006

Modificada por:

Modificación de diversas leyes para su adaptación a la Ley sobre el libre acceso a las actividades de servicios y su ejercicio

Ley 25/2009, de 22 de diciembre, de la Jefatura del Estado.

B.O.E.: 23 de diciembre de 2009

Reglamento de los Servicios de Prevención

Real Decreto 39/1997, de 17 de enero, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 31 de enero de 1997

Completado por:

Protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo

Real Decreto 665/1997, de 12 de mayo, del Ministerio de la Presidencia.

B.O.E.: 24 de mayo de 1997

Modificado por:

Modificación del Reglamento de los Servicios de Prevención

Real Decreto 780/1998, de 30 de abril, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 1 de mayo de 1998

Completado por:

Protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 374/2001, de 6 de abril, del Ministerio de la Presidencia.

B.O.E.: 1 de mayo de 2001

Completado por:

Disposiciones mínimas para la protección de la salud y seguridad de los trabajadores frente al riesgo eléctrico

Real Decreto 614/2001, de 8 de junio, del Ministerio de la Presidencia.

B.O.E.: 21 de junio de 2001

Completado por:

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Protección de la salud y la seguridad de los trabajadores frente a los riesgos que puedan derivarse de la exposición a vibraciones mecánicas

Real Decreto 1311/2005, de 4 de noviembre, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 5 de noviembre de 2005

Completado por:

Protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido

Real Decreto 286/2006, de 10 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de marzo de 2006

Completado por:

Disposiciones mínimas de seguridad y salud aplicables a los trabajos con riesgo de exposición al amianto

Real Decreto 396/2006, de 31 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de abril de 2006

Modificado por:

Modificación del Reglamento de los Servicios de Prevención y de las Disposiciones mínimas de seguridad y de salud en las obras de construcción

Real Decreto 604/2006, de 19 de mayo, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 29 de mayo de 2006

Modificado por:

Modificación del Real Decreto 39/1997, de 17 de enero, por el que se aprueba el Reglamento de los Servicios de Prevención

Real Decreto 337/2010, de 19 de marzo, del Ministerio de Trabajo e Inmigración.

B.O.E.: 23 de marzo de 2010

Modificado por:

Real Decreto por el que se modifican el R.D. 39/1997, de 17 de enero, por el que se aprueba el Reglamento de los servicios de prevención; el R.D. 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo; el R.D. 665/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo y el R.D. 374/2001, de 6 de abril, sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 598/2015, de 3 de julio, del Ministerio de la Presidencia.

B.O.E.: 4 de julio de 2015

Seguridad y Salud en los lugares de trabajo

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Real Decreto 486/1997, de 14 de abril, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 23 de abril de 1997

Modificado por:

Modificación del Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura

Real Decreto 2177/2004, de 12 de noviembre, del Ministerio de la Presidencia.

B.O.E.: 13 de noviembre de 2004

Modificado por:

Medidas urgentes en materia agraria y de aguas en respuesta a la sequía y al agravamiento de las condiciones del sector primario derivado del conflicto bélico en Ucrania y de las condiciones climatológicas, así como de promoción del uso del transporte público colectivo terrestre por parte de los jóvenes y prevención de riesgos laborales en episodios de elevadas temperaturas

Real Decreto Ley 4/2023, de 11 de mayo, de la Jefatura del Estado.

B.O.E.: 12 de mayo de 2023

Manipulación de cargas

Real Decreto 487/1997, de 14 de abril, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 23 de abril de 1997

Protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo

Real Decreto 665/1997, de 12 de mayo, del Ministerio de la Presidencia.

B.O.E.: 24 de mayo de 1997

Modificado por:

Modificación del Real Decreto 665/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo y ampliación de su ámbito de aplicación a los agentes mutágenos

Real Decreto 349/2003, de 21 de marzo, del Ministerio de la Presidencia.

B.O.E.: 5 de abril de 2003

Completado por:

Disposiciones mínimas de seguridad y salud aplicables a los trabajos con riesgo de exposición al amianto

Real Decreto 396/2006, de 31 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de abril de 2006

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Modificado por:

Real Decreto por el que se modifican el R.D. 39/1997, de 17 de enero, por el que se aprueba el Reglamento de los servicios de prevención; el R.D. 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo; el R.D. 665/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo y el R.D. 374/2001, de 6 de abril, sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 598/2015, de 3 de julio, del Ministerio de la Presidencia.

B.O.E.: 4 de julio de 2015

Utilización de equipos de trabajo

Real Decreto 1215/1997, de 18 de julio, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 7 de agosto de 1997

Modificado por:

Modificación del Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura

Real Decreto 2177/2004, de 12 de noviembre, del Ministerio de la Presidencia.

B.O.E.: 13 de noviembre de 2004

Disposiciones mínimas de seguridad y de salud en las obras de construcción

Real Decreto 1627/1997, de 24 de octubre, del Ministerio de la Presidencia.

B.O.E.: 25 de octubre de 1997

Modificado por:

Modificación del Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura

Real Decreto 2177/2004, de 12 de noviembre, del Ministerio de la Presidencia.

B.O.E.: 13 de noviembre de 2004

Completado por:

Disposiciones mínimas de seguridad y salud aplicables a los trabajos con riesgo de exposición al amianto

Real Decreto 396/2006, de 31 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de abril de 2006

Modificado por:

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Modificación del Reglamento de los Servicios de Prevención y de las Disposiciones mínimas de seguridad y de salud en las obras de construcción

Real Decreto 604/2006, de 19 de mayo, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 29 de mayo de 2006

Modificado por:

Desarrollo de la Ley 32/2006, de 18 de octubre, reguladora de la subcontratación en el sector de la construcción

Real Decreto 1109/2007, de 24 de agosto, del Ministerio de Trabajo y Asuntos Sociales.

Disposición final tercera. Modificación de los artículos 13 y 18 del Real Decreto 1627/1997.

B.O.E.: 25 de agosto de 2007

Corrección de errores.

B.O.E.: 12 de septiembre de 2007

Registro de coordinadores y coordinadoras en materia de seguridad y salud, con formación preventiva especializada en las obras de construcción, de la Comunidad Autónoma de Andalucía

Decreto 166/2005, de 12 de julio, de la Consejería de Empleo de la Junta de Andalucía.

B.O.J.A.: 4 de agosto de 2005

2.1.1. YC. Sistemas de protección colectiva

2.1.1.1. YCU. Protección contra incendios

Real Decreto por el que se establecen los requisitos esenciales de seguridad para la comercialización de los equipos a presión

Real Decreto 709/2015, de 24 de julio, del Ministerio de Industria, Energía y Turismo.

B.O.E.: 2 de septiembre de 2015

Reglamento de equipos a presión y sus instrucciones técnicas complementarias

Real Decreto 809/2021, de 21 de septiembre, del Ministerio de Industria, Comercio y Turismo.

B.O.E.: 11 de octubre de 2021

Señalización de seguridad y salud en el trabajo

Real Decreto 485/1997, de 14 de abril, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 23 de abril de 1997

Completado por:

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 374/2001, de 6 de abril, del Ministerio de la Presidencia.

B.O.E.: 1 de mayo de 2001

Completado por:

Protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido

Real Decreto 286/2006, de 10 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de marzo de 2006

Modificado por:

Real Decreto por el que se modifican el R.D. 39/1997, de 17 de enero, por el que se aprueba el Reglamento de los servicios de prevención; el R.D. 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo; el R.D. 665/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo y el R.D. 374/2001, de 6 de abril, sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 598/2015, de 3 de julio, del Ministerio de la Presidencia.

B.O.E.: 4 de julio de 2015

2.1.2. YI. Equipos de protección individual

Utilización de equipos de protección individual

Real Decreto 773/1997, de 30 de mayo, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 12 de junio de 1997

Corrección de errores:

Corrección de erratas del Real Decreto 773/1997, de 30 de mayo, sobre disposiciones de seguridad y salud relativas a la utilización por los trabajadores de equipos de protección individual

Ministerio de la Presidencia.

B.O.E.: 18 de julio de 1997

Completado por:

Protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido

Real Decreto 286/2006, de 10 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de marzo de 2006

Completado por:

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Disposiciones mínimas de seguridad y salud aplicables a los trabajos con riesgo de exposición al amianto

Real Decreto 396/2006, de 31 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de abril de 2006

Modificado por:

Real Decreto por el que se modifica el Real Decreto 773/1997, de 30 de mayo, sobre disposiciones mínimas de seguridad y salud relativas a la utilización por los trabajadores de equipos de protección individual

Real Decreto 1076/2021, de 7 de diciembre, del Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática.

B.O.E.: 8 de diciembre de 2021

2.1.3. YM. Medicina preventiva y primeros auxilios

2.1.3.1. YMM. Material médico

Orden por la que se establece el suministro a las empresas de botiquines con material de primeros auxilios en caso de accidente de trabajo, como parte de la acción protectora del sistema de la Seguridad Social

Orden TAS/2947/2007, de 8 de octubre, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 11 de octubre de 2007

2.1.4. YP. Instalaciones provisionales de higiene y bienestar

Reglamento Electrotécnico para Baja Tensión e Instrucciones Complementarias (ITC) BT 01 a BT 51 Real Decreto 842/2002, de 2 de agosto, del Ministerio de Ciencia y Tecnología.

B.O.E.: Suplemento al nº 224, de 18 de septiembre de 2002

Modificado por:

Anulado el inciso 4.2.C.2 de la ITC-BT-03

Sentencia de 17 de febrero de 2004 de la Sala Tercera del Tribunal Supremo.

B.O.E.: 5 de abril de 2004

Completado por:

Autorización para el empleo de sistemas de instalaciones con conductores aislados bajo canales protectores de material plástico

Resolución de 18 de enero de 1988, de la Dirección General de Innovación Industrial.

B.O.E.: 19 de febrero de 1988

Modificado por:

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Real Decreto por el que se modifican diversas normas reglamentarias en materia de seguridad industrial para adecuarlas a la Ley 17/2009, de 23 de noviembre, sobre el libre acceso a las actividades de servicios y su ejercicio, y a la Ley 25/2009, de 22 de diciembre, de modificación de diversas leyes para su adaptación a la Ley sobre el libre acceso a las actividades de servicios y su ejercicio

Real Decreto 560/2010, de 7 de mayo, del Ministerio de Industria, Turismo y Comercio.

B.O.E.: 22 de mayo de 2010

Texto consolidado

Modificado por:

Real Decreto por el que se aprueba una nueva Instrucción Técnica Complementaria (ITC) BT 52 "Instalaciones con fines especiales. Infraestructura para la recarga de vehículos eléctricos", del Reglamento electrotécnico para baja tensión, aprobado por Real Decreto 842/2002, de 2 de agosto, y se modifican otras instrucciones técnicas complementarias del mismo

Real Decreto 1053/2014, de 12 de diciembre, del Ministerio de Industria, Energía y Turismo.

B.O.E.: 31 de diciembre de 2014

Modificado por el Real Decreto 542/2020, de 26 de mayo, del Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática

B.O.E.: 20 de junio de 2020

Modificado por el Real Decreto 450/2022, de 14 de junio, del Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática

B.O.E.: 15 de junio de 2022

Modificado por:

Real Decreto por el que se modifican y derogan diferentes disposiciones en materia de calidad y seguridad industrial

Real Decreto 542/2020, de 26 de mayo, del Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática.

B.O.E.: 20 de junio de 2020

Modificado por:

Real Decreto por el que se modifican diversas normas reglamentarias en materia de seguridad industrial para su adaptación al principio de reconocimiento mutuo

Real Decreto 145/2023, de 28 de febrero, del Ministerio de Industria, Comercio y Turismo.

B.O.E.: 18 de marzo de 2023

DB-HS Salubridad

Código Técnico de la Edificación (CTE). Documento Básico HS.

Real Decreto 314/2006, de 17 de marzo, del Ministerio de Vivienda.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

B.O.E.: 28 de marzo de 2006

Modificado por el Real Decreto 1371/2007, de 19 de octubre, del Ministerio de Vivienda.

B.O.E.: 23 de octubre de 2007

Corrección de errores.

B.O.E.: 25 de enero de 2008

Modificado por:

Modificación de determinados documentos básicos del Código Técnico de la Edificación aprobados por el Real Decreto 314/2006, de 17 de marzo, y el Real Decreto 1371/2007, de 19 de octubre

Orden VIV/984/2009, de 15 de abril, del Ministerio de Vivienda.

B.O.E.: 23 de abril de 2009

Modificado por:

Orden por la que se modifican el Documento Básico DB-HE "Ahorro de energía" y el Documento Básico DB-HS "Salubridad", del Código Técnico de la Edificación, aprobado por Real Decreto 314/2006, de 17 de marzo

Orden FOM/588/2017, de 15 de junio, del Ministerio de Fomento.

B.O.E.: 23 de junio de 2017

Modificado por:

Real Decreto por el que se modifica el Código Técnico de la Edificación, aprobado por el Real Decreto 314/2006, de 17 de marzo

Real Decreto 732/2019, de 20 de diciembre, del Ministerio de Fomento.

B.O.E.: 27 de diciembre de 2019

Reglamento regulador de las infraestructuras comunes de telecomunicaciones para el acceso a los servicios de telecomunicación en el interior de las edificaciones

Real Decreto 346/2011, de 11 de marzo, del Ministerio de Industria, Turismo y Comercio.

B.O.E.: 1 de abril de 2011

Desarrollado por:

Orden por la que se desarrolla el Reglamento regulador de las infraestructuras comunes de telecomunicaciones para el acceso a los servicios de telecomunicación en el interior de las edificaciones, aprobado por el Real Decreto 346/2011, de 11 de marzo

Modificados los artículos 2 y 6 por la Orden ECE/983/2019.

Orden ITC/1644/2011, de 10 de junio, del Ministerio de Industria, Turismo y Comercio.

B.O.E.: 16 de junio de 2011

Modificado por:

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Real Decreto por el que se aprueba el Plan Técnico Nacional de la Televisión Digital Terrestre y se regulan determinados aspectos para la liberación del segundo dividendo digital

Derogados los artículos 1, 2, 3.1, 7, 8, 9 y 10 y las disposiciones adicionales primera, octava y decimotercera por el R.D. 250/2025.

Real Decreto 391/2019, de 21 de junio, del Ministerio de Economía y Empresa.

B.O.E.: 25 de junio de 2019

Modificado por:

Orden por la que se regulan las características de reacción al fuego de los cables de telecomunicaciones en el interior de las edificaciones, se modifican determinados anexos del Reglamento regulador de las infraestructuras comunes de telecomunicaciones para el acceso a los servicios de telecomunicación en el interior de las edificaciones, aprobado por Real Decreto 346/2011, de 11 de marzo y se modifica la Orden ITC/1644/2011, de 10 de junio, por la que se desarrolla dicho reglamento

Orden ECE/983/2019, de 26 de septiembre, del Ministerio de Economía y Empresa.

B.O.E.: 3 de octubre de 2019

Modificado por:

Real Decreto por el que se aprueba el Plan Técnico Nacional de la Televisión Digital Terrestre y se regulan determinadas medidas de impulso de la evolución tecnológica de la televisión digital terrestre

Real Decreto 250/2025, de 25 de marzo, del Ministerio para la Transformación Digital y de la Función Pública.

B.O.E.: 26 de marzo de 2025

Requisitos sanitarios para la prevención y el control de la legionelosis

Real Decreto 487/2022, de 4 de julio, del Ministerio de Sanidad.

B.O.E.: 22 de junio de 2022

Texto consolidado. Última modificación: 11 de enero de 2023

Medidas para el control y la vigilancia higiénico-sanitarias de instalaciones de riesgo en la transmisión de la legionelosis y se crea el registro oficial de establecimientos y servicios biocidas de Andalucía

Decreto 287/2002, de 26 de noviembre, de la Consejería de Salud de la Junta de Andalucía.

B.O.J.A.: 7 de diciembre de 2002

Criterios técnico-sanitarios de la calidad del agua de consumo, su control y suministro

Real Decreto 3/2023, de 10 de enero, del Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Democrática.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

B.O.E.: 11 de enero de 2023

2.1.5. YS. Señalización provisional de obras

2.1.5.1. YSB. Balizamiento

Instrucción 8.3-IC Señalización de obras

Orden de 31 de agosto de 1987, del Ministerio de Obras Públicas y Urbanismo.

B.O.E.: 18 de septiembre de 1987

Señalización de seguridad y salud en el trabajo

Real Decreto 485/1997, de 14 de abril, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 23 de abril de 1997

Completado por:

Protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 374/2001, de 6 de abril, del Ministerio de la Presidencia.

B.O.E.: 1 de mayo de 2001

Completado por:

Protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido

Real Decreto 286/2006, de 10 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de marzo de 2006

Modificado por:

Real Decreto por el que se modifican el R.D. 39/1997, de 17 de enero, por el que se aprueba el Reglamento de los servicios de prevención; el R.D. 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo; el R.D. 665/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo y el R.D. 374/2001, de 6 de abril, sobre la protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 598/2015, de 3 de julio, del Ministerio de la Presidencia.

B.O.E.: 4 de julio de 2015

2.1.5.2. YSH. Señalización horizontal

Instrucción 8.3-IC Señalización de obras

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Orden de 31 de agosto de 1987, del Ministerio de Obras Públicas y Urbanismo.

B.O.E.: 18 de septiembre de 1987

2.1.5.3. YSV. Señalización vertical

Instrucción 8.3-IC Señalización de obras

Orden de 31 de agosto de 1987, del Ministerio de Obras Públicas y Urbanismo.

B.O.E.: 18 de septiembre de 1987

2.1.5.4. YSN. Señalización manual

Instrucción 8.3-IC Señalización de obras

Orden de 31 de agosto de 1987, del Ministerio de Obras Públicas y Urbanismo.

B.O.E.: 18 de septiembre de 1987

2.1.5.5. YSS. Señalización de seguridad y salud

Señalización de seguridad y salud en el trabajo

Real Decreto 485/1997, de 14 de abril, del Ministerio de Trabajo y Asuntos Sociales.

B.O.E.: 23 de abril de 1997

Completado por:

Protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 374/2001, de 6 de abril, del Ministerio de la Presidencia.

B.O.E.: 1 de mayo de 2001

Completado por:

Protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido

Real Decreto 286/2006, de 10 de marzo, del Ministerio de la Presidencia.

B.O.E.: 11 de marzo de 2006

Modificado por:

Real Decreto por el que se modifican el R.D. 39/1997, de 17 de enero, por el que se aprueba el Reglamento de los servicios de prevención; el R.D. 485/1997, de 14 de abril, sobre disposiciones mínimas en materia de señalización de seguridad y salud en el trabajo; el R.D. 665/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes cancerígenos durante el trabajo y el R.D. 374/2001, de 6 de abril, sobre la

Anejos a la Memoria Estudio Básico de Seguridad y Salud

protección de la salud y seguridad de los trabajadores contra los riesgos relacionados con los agentes químicos durante el trabajo

Real Decreto 598/2015, de 3 de julio, del Ministerio de la Presidencia.

B.O.E.: 4 de julio de 2015

- 3. Pliego
- 3.1. Pliego de cláusulas administrativas
- 3.1.1. Disposiciones generales

3.1.1.1. Objeto del Pliego de condiciones

El presente Pliego de condiciones junto con las disposiciones contenidas en el correspondiente Pliego del Proyecto de ejecución, tienen por objeto definir las atribuciones y obligaciones de los agentes que intervienen en materia de Seguridad y Salud, así como las condiciones que deben cumplir las medidas preventivas, las protecciones individuales y colectivas de la construcción de la obra "Adecuación y Mejora del Sendero Río Molinos SL-A 148 – Bayárcal", situada en Sendero de Los Molinos SL-A-148, Bayárcal, Almería, Bayárcal (Almería), según el proyecto redactado por José Antonio Sánchez Hernández. Todo ello con fin de evitar cualquier accidente o enfermedad profesional, que pueden ocasionarse durante el transcurso de la ejecución de la obra o en los futuros trabajos de conservación, reparación y mantenimiento.

3.1.2. Disposiciones facultativas

3.1.2.1. Definición, atribuciones y obligaciones de los agentes de la edificación

Las atribuciones y las obligaciones de los distintos agentes intervinientes en la edificación son las reguladas en sus aspectos generales por la "Ley 38/1999. Ley de Ordenación de la Edificación".

3.1.2.2. El promotor

Es la persona física o jurídica, pública o privada, que individual o colectivamente decide, impulsa, programa y financia con recursos propios o ajenos, las obras de edificación para sí o para su posterior enajenación, entrega o cesión a terceros bajo cualquier título.

Tiene la responsabilidad de contratar a los técnicos redactores del preceptivo Estudio de Seguridad y Salud - o Estudio Básico, en su caso - al igual que a los técnicos coordinadores en la materia en la fase que corresponda, facilitando copias a las empresas contratistas, subcontratistas o trabajadores autónomos contratados directamente por el promotor, exigiendo la presentación de cada Plan de Seguridad y Salud previamente al comienzo de las obras.

El promotor tendrá la consideración de contratista cuando realice la totalidad o determinadas partes de la obra con medios humanos y recursos propios, o en el caso de contratar directamente a trabajadores autónomos para su realización o para trabajos parciales de la misma.

3.1.2.3. El proyectista

Es el agente que, por encargo del promotor y con sujeción a la normativa técnica y urbanística correspondiente, redacta el proyecto.

Tomará en consideración en las fases de concepción, estudio y elaboración del proyecto básico y de ejecución, los principios y criterios generales de prevención en materia de seguridad y de salud, de acuerdo con la legislación vigente.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

3.1.2.4. El contratista y subcontratista

Contratista es la persona física o jurídica que asume contractualmente ante el promotor, con medios humanos y materiales propios o ajenos, el compromiso de ejecutar la totalidad o parte de las obras, con sujeción al proyecto y al contrato.

Subcontratista es la persona física o jurídica que asume contractualmente ante el contratista, empresario principal, el compromiso de realizar determinadas partes o instalaciones de la obra, con sujeción al proyecto por el que se rige su ejecución.

El contratista comunicará a la autoridad laboral competente la apertura del centro de trabajo en la que incluirá el Plan de Seguridad y Salud.

Adoptará todas las medidas preventivas que cumplan los preceptos en materia de Prevención de Riesgos Laborales y Seguridad y Salud que establece la legislación vigente, redactando el correspondiente Plan de Seguridad y ajustándose al cumplimiento estricto y permanente de lo establecido en el Estudio Básico de Seguridad y Salud, disponiendo de todos los medios necesarios y dotando al personal del equipamiento de seguridad exigibles, cumpliendo las órdenes efectuadas por el coordinador en materia de seguridad y de salud durante la ejecución de la obra.

Supervisará de manera continuada el cumplimiento de las normas de seguridad, tutelando las actividades de los trabajadores a su cargo y, en su caso, relevando de su puesto a todos aquellos que pudieran menoscabar las condiciones básicas de seguridad personales o generales, por no estar en las condiciones adecuadas.

Entregará la información suficiente al coordinador en materia de seguridad y de salud durante la ejecución de la obra, donde se acredite la estructura organizativa de la empresa, sus responsabilidades, funciones, procesos, procedimientos y recursos materiales y humanos disponibles, con el fin de garantizar una adecuada acción preventiva de riesgos de la obra.

Entre las responsabilidades y obligaciones del contratista y de los subcontratistas en materia de seguridad y salud, cabe destacar:

- Aplicar los principios de la acción preventiva que se recogen en la Ley de Prevención de Riesgos Laborales.
- Cumplir y hacer cumplir a su personal lo establecido en el plan de seguridad y salud.
- Cumplir la normativa en materia de prevención de riesgos laborales, teniendo en cuenta, en su caso, las obligaciones sobre coordinación de actividades empresariales, durante la ejecución de la obra.
- Informar y proporcionar las instrucciones adecuadas y precisas a los trabajadores autónomos sobre todas las medidas que hayan de adoptarse en lo referente a su seguridad y salud en la obra.
- Atender las indicaciones y consignas del coordinador en materia de seguridad y salud, cumpliendo estrictamente sus instrucciones durante la ejecución de la obra.

Responderán de la correcta ejecución de las medidas preventivas fijadas en el plan de seguridad y salud en lo relativo a las obligaciones que les correspondan a ellos directamente o, en su caso, a los trabajadores autónomos por ellos contratados.

Responderán solidariamente de las consecuencias que se deriven del incumplimiento de las medidas previstas en el plan.

Las responsabilidades de los coordinadores, de la Dirección facultativa y del promotor, no eximirán de sus responsabilidades a los contratistas y a los subcontratistas.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

3.1.2.5. La dirección facultativa

Se entiende como dirección facultativa:

El técnico o los técnicos competentes designados por el promotor, encargados de la dirección y del control de la ejecución de la obra.

Las responsabilidades de la Dirección facultativa y del promotor, no eximen en ningún caso de las atribuibles a los contratistas y a los subcontratistas.

3.1.2.6. Coordinador de Seguridad y Salud en Proyecto

Es el técnico competente designado por el promotor para coordinar, durante la fase del proyecto de ejecución, la aplicación de los principios y criterios generales de prevención en materia de seguridad y salud.

3.1.2.7. Coordinador de Seguridad y Salud en Ejecución

El Coordinador de Seguridad y Salud durante la ejecución de la obra, es el técnico competente designado por el promotor, que forma parte de la dirección facultativa.

Asumirá las tareas y responsabilidades asociadas a las siguientes funciones:

- Coordinar la aplicación de los principios generales de prevención y de seguridad, tomando las decisiones técnicas y de organización, con el fin de planificar las distintas tareas o fases de trabajo que vayan a desarrollarse simultánea o sucesivamente, estimando la duración requerida para la ejecución de las mismas.
- Coordinar las actividades de la obra para garantizar que los contratistas y, en su caso, los subcontratistas y los trabajadores autónomos, apliquen de manera coherente y responsable los principios de la acción preventiva recogidos en la legislación vigente.
- Aprobar el plan de seguridad y salud elaborado por el contratista y, en su caso, las modificaciones introducidas en el mismo.
- Organizar la coordinación de actividades empresariales.
- Coordinar las acciones y funciones de control de la aplicación correcta de los métodos de trabajo.
- Adoptar las medidas necesarias para que sólo las personas autorizadas puedan acceder a la obra. La Dirección facultativa asumirá esta función cuando no fuera necesaria la designación de un coordinador.

3.1.2.8. Trabajadores Autónomos

Es la persona física, distinta del contratista y subcontratista, que realiza de forma personal y directa una actividad profesional, sin sujeción a un contrato de trabajo y que asume contractualmente ante el promotor, el contratista o el subcontratista, el compromiso de realizar determinadas partes o instalaciones de la obra.

Cuando el trabajador autónomo emplee en la obra a trabajadores por cuenta ajena, tendrá la consideración de contratista o subcontratista.

Los trabajadores autónomos cumplirán lo establecido en el plan de seguridad y salud.

3.1.2.9. Trabajadores por cuenta ajena

Los contratistas y subcontratistas deberán garantizar que los trabajadores reciban una información adecuada de todas las medidas que hayan de adoptarse en lo que se refiere a su seguridad y su salud en la obra.

El contratista facilitará a los representantes de los trabajadores en el centro de trabajo una copia del plan de seguridad y salud y de sus posibles modificaciones.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

3.1.2.10. Fabricantes y suministradores de equipos de protección y materiales de construcción

Los fabricantes, importadores y suministradores de maquinaria, equipos, productos y útiles de trabajo, deberán suministrar la información que indique la forma correcta de utilización por los trabajadores, las medidas preventivas adicionales que deban tomarse y los riesgos laborales que conlleven tanto su uso normal como su manipulación o empleo inadecuado.

3.1.2.11. Recursos preventivos

Con el fin de verificar el cumplimiento de las medidas incluidas en el Plan de Seguridad y Salud, el empresario designará para la obra los recursos preventivos correspondientes, que podrán ser:

- a) Uno o varios trabajadores designados por la empresa.
- b) Uno o varios miembros del servicio de prevención propio de la empresa.
- c) Uno o varios miembros del servicio o los servicios de prevención ajenos.

Las personas a las que se asigne esta vigilancia deberán dar las instrucciones necesarias para el correcto e inmediato cumplimiento de las actividades preventivas. En caso de observar un deficiente cumplimiento de las mismas o una ausencia, insuficiencia o falta de adecuación de las mismas, se informará al empresario para que éste adopte las medidas necesarias para su corrección, notificándose a su vez al Coordinador de Seguridad y Salud y al resto de la dirección facultativa.

En el Plan de Seguridad y Salud se especificarán los casos en que la presencia de los recursos preventivos es necesaria, especificándose expresamente el nombre de la persona o personas designadas para tal fin, concretando las tareas en las que inicialmente se prevé necesaria su presencia.

3.1.3. Formación en Seguridad

Con el fin de que todo el personal que acceda a la obra disponga de la suficiente formación en las materias preventivas de seguridad y salud, la empresa se encargará de su formación para la adecuada prevención de riesgos y el correcto uso de las protecciones colectivas e individuales. Dicha formación alcanzará todos los niveles de la empresa, desde los directivos hasta los trabajadores no cualificados, incluyendo a los técnicos, encargados, especialistas y operadores de máquinas entre otros.

3.1.4. Reconocimientos médicos

La vigilancia del estado de salud de los trabajadores quedará garantizada por la empresa contratista, en función de los riesgos inherentes al trabajo asignado y en los casos establecidos por la legislación vigente.

Dicha vigilancia será voluntaria, excepto cuando la realización de los reconocimientos sea imprescindible para evaluar los efectos de las condiciones de trabajo sobre su salud, o para verificar que su estado de salud no constituye un peligro para otras personas o para el mismo trabajador.

3.1.5. Salud e higiene en el trabajo

3.1.5.1. Primeros auxilios

El empresario designará al personal encargado de la adopción de las medidas necesarias en caso de accidente, con el fin de garantizar la prestación de los primeros auxilios y la evacuación del accidentado.

Se dispondrá, en un lugar visible de la obra y accesible a los operarios, un botiquín perfectamente equipado con material sanitario destinado a primeros auxilios.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

El contratista instalará rótulos con caracteres legibles hasta una distancia de 2 m, en el que se suministre a los trabajadores y participantes en la obra la información suficiente para establecer rápido contacto con el centro asistencial más próximo.

3.1.5.2. Actuación en caso de accidente

En caso de accidente se tomarán solamente las medidas indispensables hasta que llegue la asistencia médica, para que el accidentado pueda ser trasladado con rapidez y sin riesgo. En ningún caso se le moverá, excepto cuando sea imprescindible para su integridad.

Se comprobarán sus signos vitales (consciencia, respiración, pulso y presión sanguínea), se le intentará tranquilizar, y se le cubrirá con una manta para mantener su temperatura corporal.

No se le suministrará agua, bebidas o medicamento alguno y, en caso de hemorragia, se presionarán las heridas con gasas limpias.

El empresario notificará el accidente por escrito a la autoridad laboral, conforme al procedimiento reglamentario.

3.1.6. Documentación de obra

3.1.6.1. Estudio Básico de Seguridad y Salud

Es el documento elaborado por el técnico competente designado por el promotor, donde se precisan las normas de seguridad y salud aplicables a la obra, contemplando la identificación de los riesgos laborales que puedan ser evitados, indicando las medidas técnicas necesarias para ello.

Incluye también las previsiones y las informaciones útiles para efectuar en su día, en las debidas condiciones de seguridad y salud, los previsibles trabajos posteriores.

3.1.6.2. Plan de seguridad y salud

En aplicación del presente Estudio Básico de Seguridad y Salud, cada contratista elaborará el correspondiente plan de seguridad y salud en el trabajo en el que se analicen, estudien, desarrollen y complementen las previsiones contenidas en el presente estudio básico, en función de su propio sistema de ejecución de la obra. En dicho plan se incluirán, en su caso, las propuestas de medidas alternativas de prevención que el contratista proponga con la correspondiente justificación técnica, que no podrán implicar disminución de los niveles de protección previstos en este estudio básico.

El coordinador en materia de seguridad y de salud durante la ejecución de la obra aprobará el plan de seguridad y salud antes del inicio de la misma.

El plan de seguridad y salud podrá ser modificado por el contratista en función del proceso de ejecución de la obra, de la evolución de los trabajos y de las posibles incidencias o modificaciones que puedan surgir durante el desarrollo de la misma, siempre con la aprobación expresa del Coordinador de Seguridad y Salud y la dirección facultativa.

Quienes intervengan en la ejecución de la obra, así como las personas u órganos con responsabilidades en materia de prevención de las empresas intervinientes en la misma y los representantes de los trabajadores, podrán presentar por escrito y de forma razonada, las sugerencias y alternativas que estimen oportunas. A tal efecto, el plan de seguridad y salud estará en la obra a disposición permanente de los mismos y de la dirección facultativa.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

3.1.6.3. Acta de aprobación del plan

El plan de seguridad y salud elaborado por el contratista será aprobado por el Coordinador de Seguridad y Salud durante la ejecución de la obra, por la dirección facultativa o por la Administración en el caso de obras públicas, quien deberá emitir un acta de aprobación como documento acreditativo de dicha operación, visado por el Colegio Profesional correspondiente.

3.1.6.4. Comunicación de apertura de centro de trabajo

La comunicación de apertura del centro de trabajo a la autoridad laboral competente será previa al comienzo de los trabajos y se presentará únicamente por los empresarios que tengan la consideración de contratistas.

La comunicación contendrá los datos de la empresa, del centro de trabajo y de producción y/o almacenamiento del centro de trabajo. Deberá incluir, además, el plan de seguridad y salud.

3.1.6.5. Libro de incidencias

Con fines de control y seguimiento del plan de seguridad y salud, en cada centro de trabajo existirá un libro de incidencias que constará de hojas por duplicado, habilitado a tal efecto.

Será facilitado por el colegio profesional que vise el acta de aprobación del plan o la oficina de supervisión de proyectos u órgano equivalente cuando se trate de obras de las administraciones públicas.

El libro de incidencias deberá mantenerse siempre en la obra, en poder del Coordinador de Seguridad y Salud durante la ejecución de la obra, teniendo acceso la dirección facultativa de la obra, los contratistas y subcontratistas y los trabajadores autónomos, así como las personas u órganos con responsabilidades en materia de prevención en las empresas intervinientes en la obra, los representantes de los trabajadores y los técnicos de los órganos especializados en materia de seguridad y salud en el trabajo de las administraciones públicas competentes, quienes podrán hacer anotaciones en el mismo.

El Coordinador de Seguridad y Salud durante la ejecución de la obra, deberá notificar al contratista afectado y a los representantes de los trabajadores de éste, sobre las anotaciones efectuadas en el libro de incidencias.

Cuando las anotaciones se refieran a cualquier incumplimiento de las advertencias u observaciones anteriores, se remitirá una copia a la Inspección de Trabajo y Seguridad Social en el plazo de veinticuatro horas. En todo caso, deberá especificarse si la anotación se trata de una nueva observación o supone una reiteración de una advertencia u observación anterior.

3.1.6.6. Libro de órdenes

En la obra existirá un libro de órdenes y asistencias, en el que la dirección facultativa reseñará las incidencias, órdenes y asistencias que se produzcan en el desarrollo de la obra.

Las anotaciones así expuestas tienen rango de órdenes o comentarios necesarios de ejecución de obra y, en consecuencia, serán respetadas por el contratista de la obra.

3.1.6.7. Libro de subcontratación

El contratista deberá disponer de un libro de subcontratación, que permanecerá en todo momento en la obra, reflejando por orden cronológico desde el comienzo de los trabajos, todas y cada una de las subcontrataciones realizadas en una determinada obra con empresas subcontratistas y trabajadores autónomos.

Al libro de subcontratación tendrán acceso el promotor, la dirección facultativa, el Coordinador de Seguridad y Salud en fase de ejecución de la obra, las empresas y trabajadores autónomos intervinientes en la obra, los técnicos de prevención, los delegados de prevención, la autoridad laboral y los representantes de los trabajadores de las diferentes empresas que intervengan en la ejecución de la obra.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

3.1.7. Disposiciones Económicas

El marco de relaciones económicas para el abono y recepción de la obra, se fija en el pliego de condiciones del proyecto o en el correspondiente contrato de obra entre el promotor y el contratista, debiendo contener al menos los puntos siguientes:

- Fianzas
- De los precios
 - Precio básico
 - Precio unitario
 - Presupuesto de Ejecución Material (PEM)
 - Precios contradictorios
 - Reclamación de aumento de precios
 - Formas tradicionales de medir o de aplicar los precios
 - De la revisión de los precios contratados
 - Acopio de materiales
 - Obras por administración
- Valoración y abono de los trabajos
- Indemnizaciones Mutuas
- Retenciones en concepto de garantía
- Plazos de ejecución y plan de obra
- Liquidación económica de las obras
- Liquidación final de la obra

3.2. Pliego de condiciones técnicas particulares

3.2.1. Medios de protección colectiva

Los medios de protección colectiva se colocarán según las especificaciones del plan de seguridad y salud antes de iniciar el trabajo en el que se requieran, no suponiendo un riesgo en sí mismos.

Se repondrán siempre que estén deteriorados, al final del periodo de su vida útil, después de estar sometidos a solicitaciones límite, o cuando sus tolerancias sean superiores a las admitidas o aconsejadas por el fabricante.

El mantenimiento será vigilado de forma periódica (cada semana) por el Delegado de Prevención.

3.2.2. Medios de protección individual

Dispondrán de marcado CE, que llevarán inscrito en el propio equipo, en el embalaje y en el folleto informativo.

Serán ergonómicos y no causarán molestias innecesarias. Nunca supondrán un riesgo en sí mismos, ni perderán su seguridad de forma involuntaria.

El fabricante los suministrará junto con un folleto informativo en el que aparecerán las instrucciones de uso y mantenimiento, nombre y dirección del fabricante, grado o clase de protección, accesorios que pueda llevar y características de las piezas de repuesto, límite de uso, plazo de vida útil y controles a los que se ha sometido. Estará redactado de forma comprensible y, en el caso de equipos de importación, traducidos a la lengua oficial.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Serán suministrados gratuitamente por el empresario y se reemplazarán siempre que estén deteriorados, al final del periodo de su vida útil o después de estar sometidos a solicitaciones límite.

Se utilizarán de forma personal y para los usos previstos por el fabricante, supervisando el mantenimiento el Delegado de Prevención.

3.2.3. Instalaciones provisionales de salud y confort

Los locales destinados a instalaciones provisionales de salud y confort tendrán una temperatura, iluminación, ventilación y condiciones de humedad adecuadas para su uso. Los revestimientos de los suelos, paredes y techos serán continuos, lisos e impermeables, acabados preferentemente con colores claros y con material que permita la limpieza con desinfectantes o antisépticos.

El contratista mantendrá las instalaciones en perfectas condiciones sanitarias (limpieza diaria), estarán provistas de agua corriente fría y caliente y dotadas de los complementos necesarios para higiene personal, tales como jabón, toallas y recipientes de desechos.

3.2.3.1. Vestuarios

Serán de fácil acceso, estarán próximos al área de trabajo y tendrán asientos y taquillas independientes bajo llave, con espacio suficiente para guardar la ropa y el calzado.

Se dispondrá una superficie mínima de 2 m² por cada trabajador destinada a vestuario, con una altura mínima de 2,30 m.

Cuando no se disponga de vestuarios, se habilitará una zona para dejar la ropa y los objetos personales bajo llave.

3.2.3.2. Aseos y duchas

Estarán junto a los vestuarios y dispondrán de instalación de agua fría y caliente, ubicando al menos una cuarta parte de los grifos en cabinas individuales con puerta con cierre interior.

Las cabinas tendrán una superficie mínima de 2 m² y una altura mínima de 2,30 m.

La dotación mínima prevista para los aseos será de:

- 1 ducha por cada 10 trabajadores o fracción que trabajen en la misma jornada
- 1 retrete por cada 25 hombres o fracción y 1 por cada 15 mujeres o fracción
- 1 lavabo por cada retrete
- 1 urinario por cada 25 hombres o fracción
- 1 secamanos de celulosa o eléctrico por cada lavabo
- 1 jabonera dosificadora por cada lavabo
- 1 recipiente para recogida de celulosa sanitaria
- 1 portarrollos con papel higiénico por cada inodoro

3.2.3.3. Retretes

Serán de fácil acceso y estarán próximos al área de trabajo. Se ubicarán preferentemente en cabinas de dimensiones mínimas 1,2x1,0 m con altura de 2,30 m, sin visibilidad desde el exterior y provistas de percha y puerta con cierre interior.

Dispondrán de ventilación al exterior, pudiendo no tener techo siempre que comuniquen con aseos o pasillos con ventilación exterior, evitando cualquier comunicación con comedores, cocinas, dormitorios o vestuarios.

Anejos a la Memoria Estudio Básico de Seguridad y Salud

Tendrán descarga automática de agua corriente y en el caso de que no puedan conectarse a la red de alcantarillado se dispondrá de letrinas sanitarias o fosas sépticas.

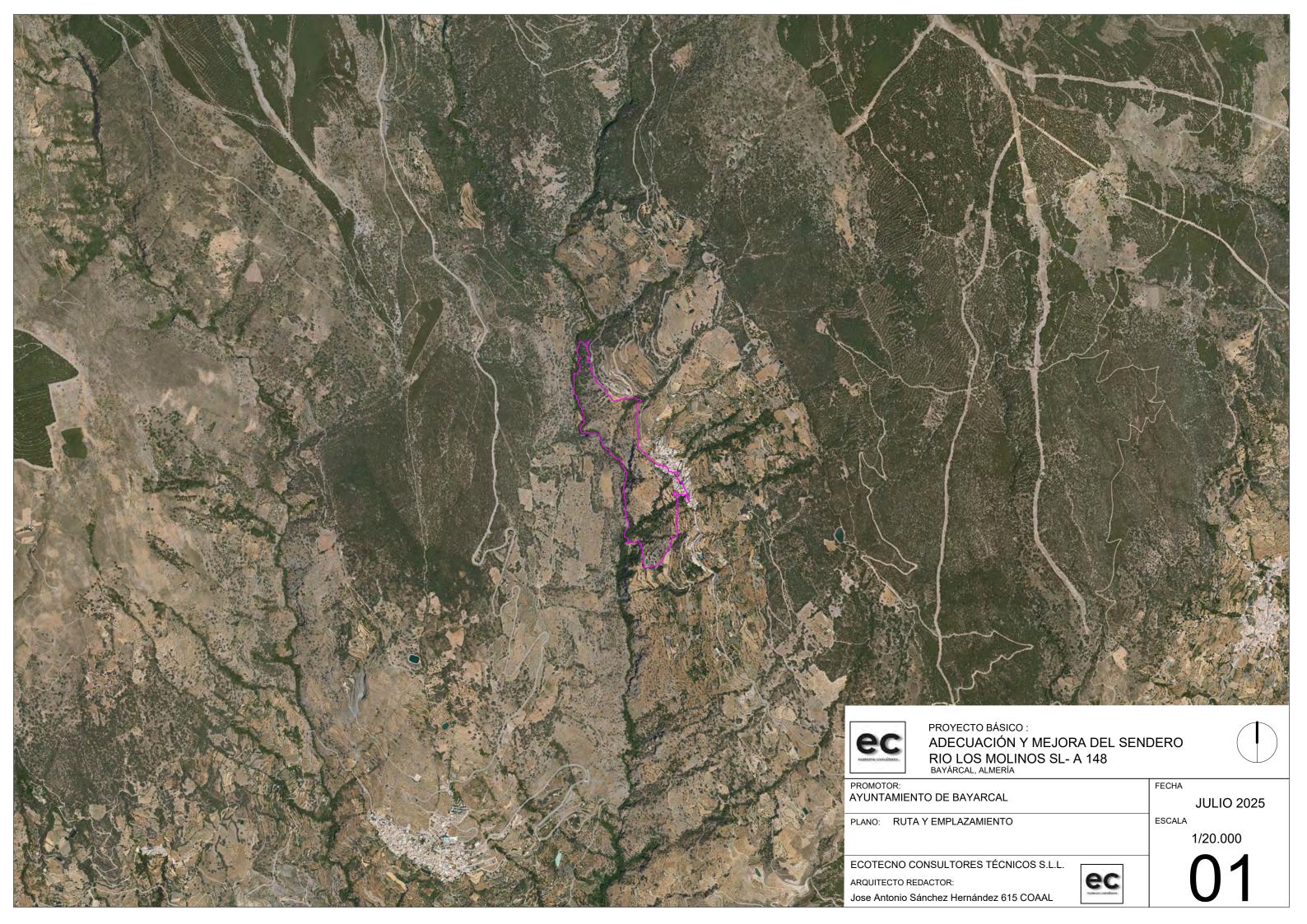
3.2.3.4. Comedor y cocina

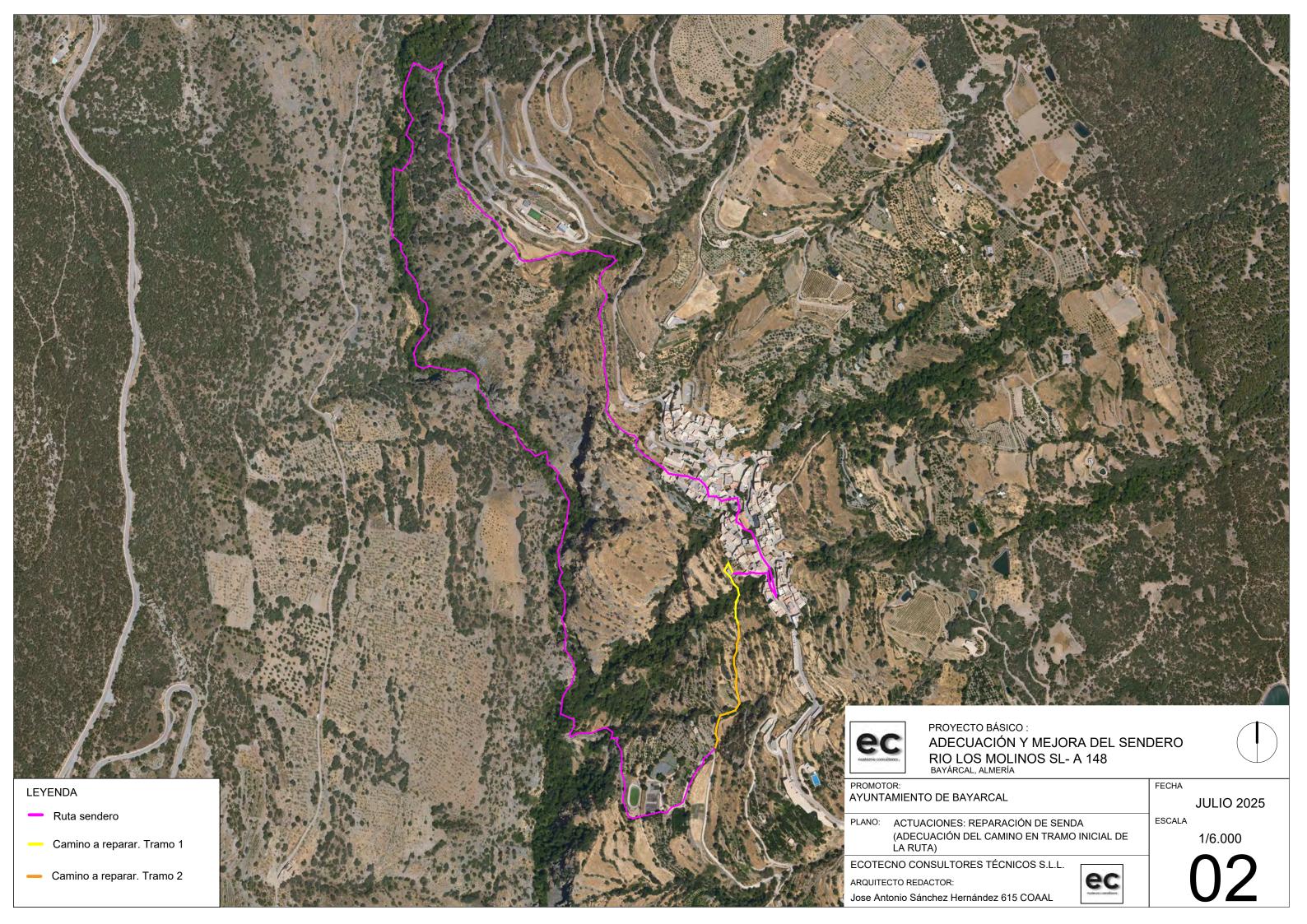
Los locales destinados a comedor y cocina estarán equipados con mesas, sillas de material lavable y vajilla, y dispondrán de calefacción en invierno. Quedarán separados de las áreas de trabajo y de cualquier fuente de contaminación ambiental.

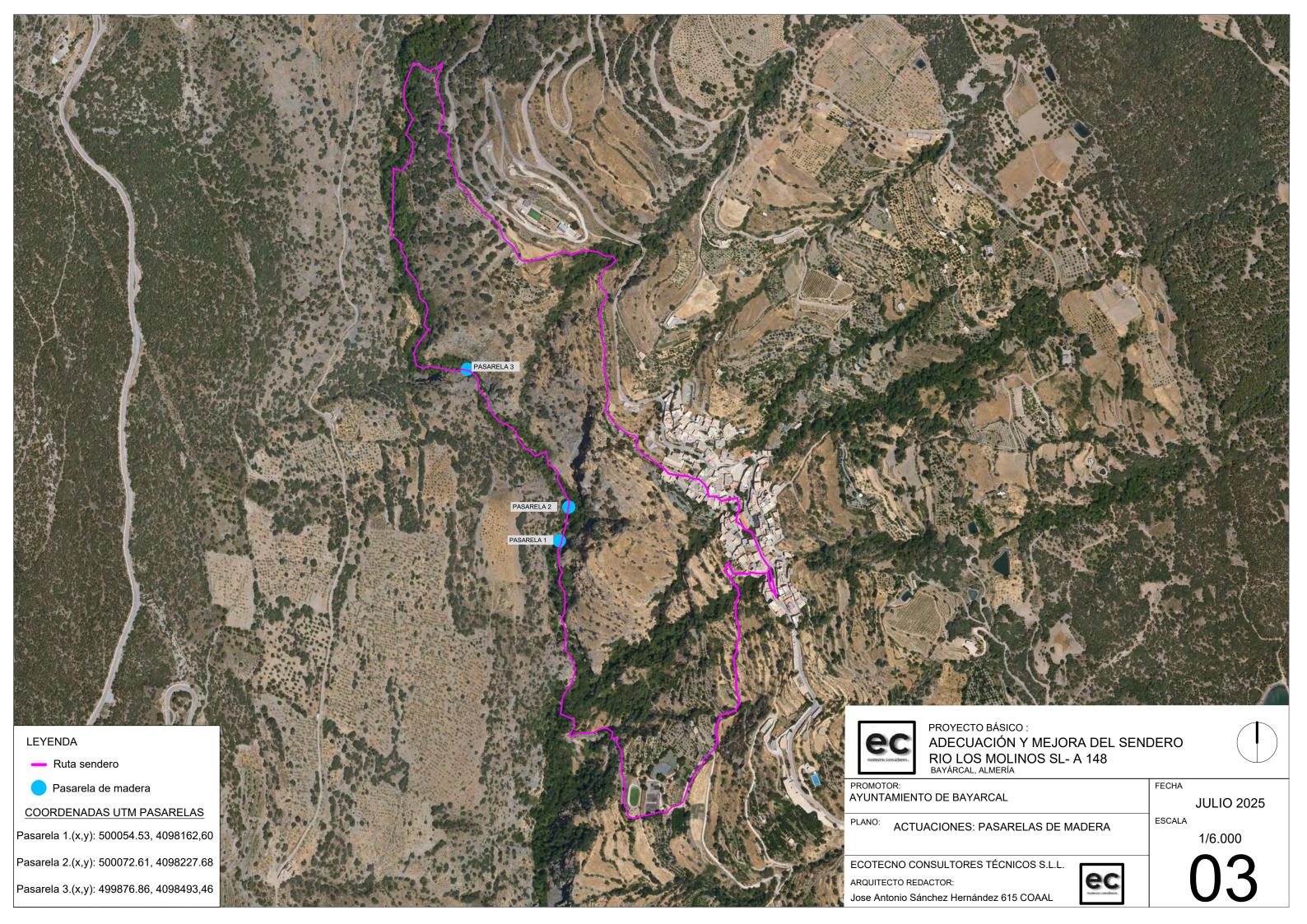
En el caso de que los trabajadores lleven su propia comida, dispondrán de calientaplatos, prohibiéndose fuera de los lugares previstos la preparación de la comida mediante fuego, brasas o barbacoas.

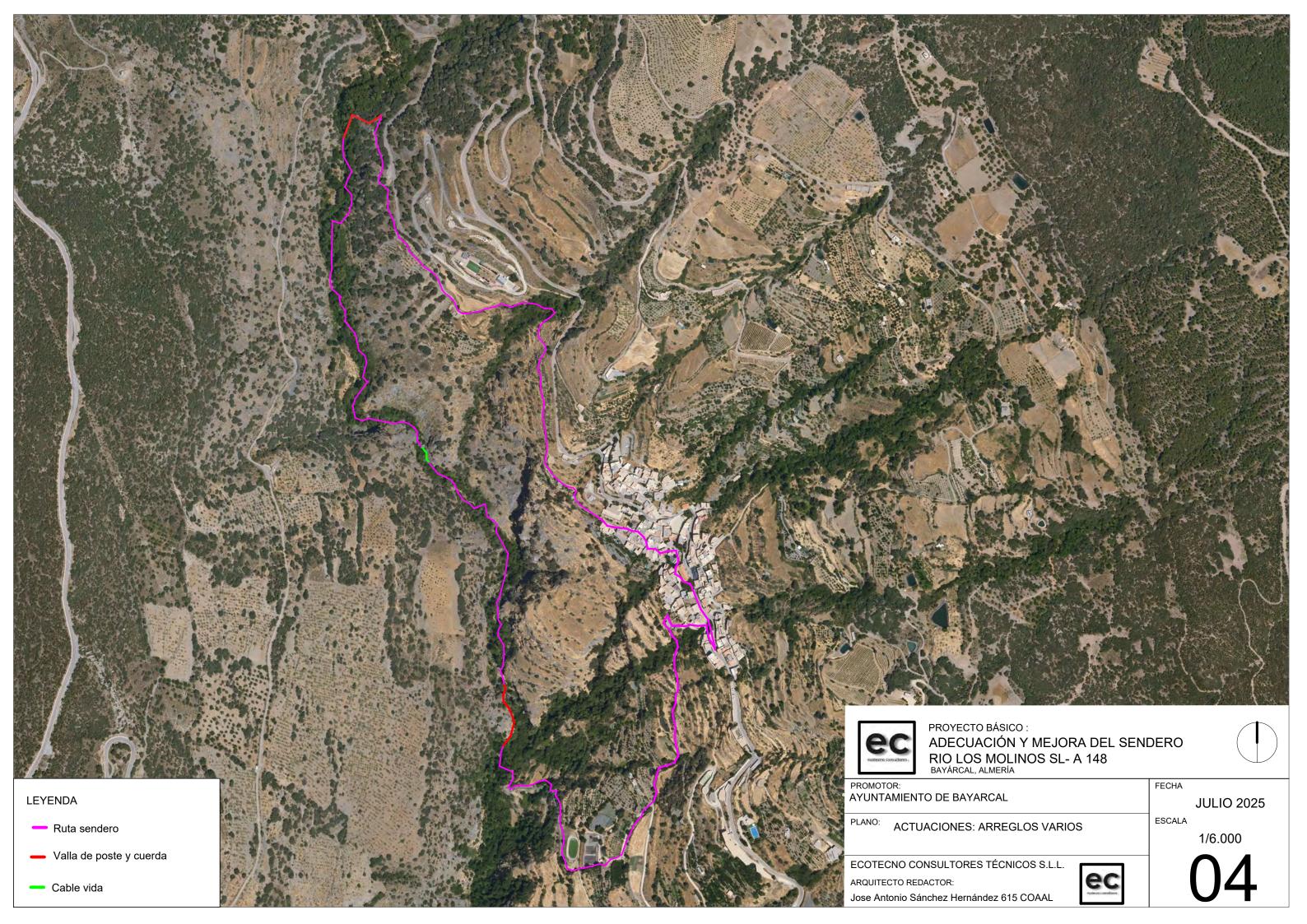
La superficie destinada a la zona de comedor y cocina será como mínimo de 2 m² por cada operario que utilice dicha instalación.

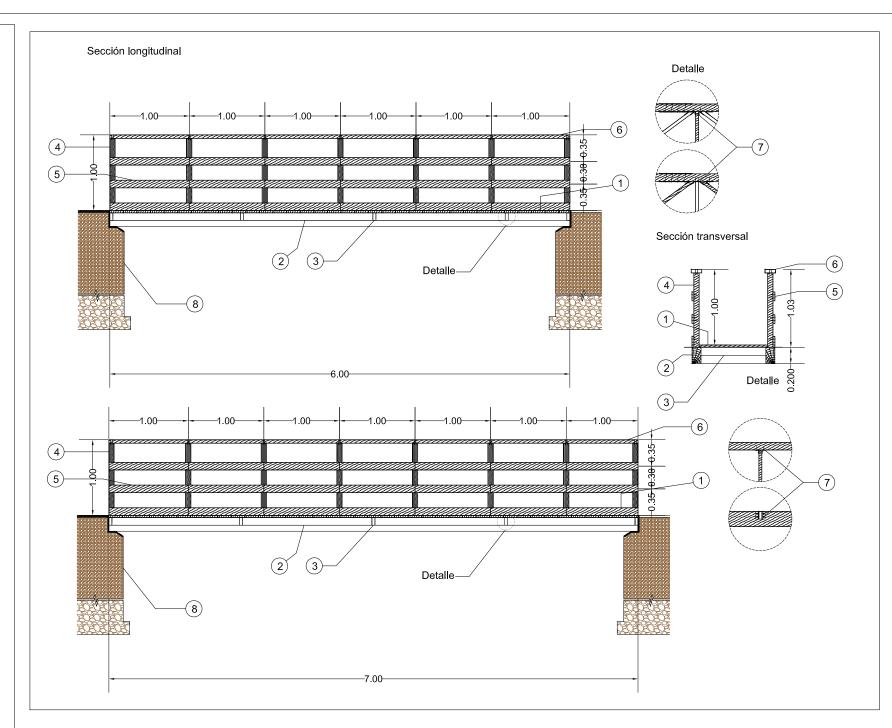
En Huercal de Almería, a 10 de Septiembre de 2025

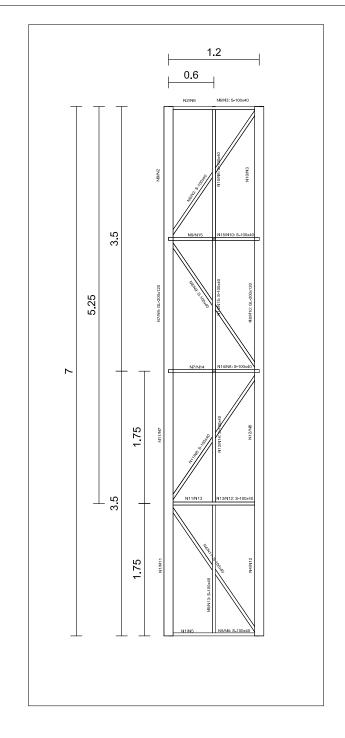

Fdo.: Jose Antonio Sánchez Hernández

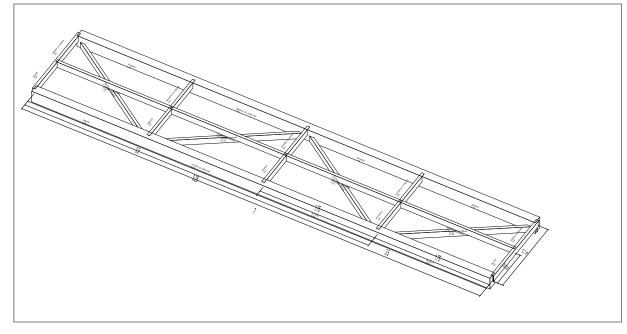

Arquitecto


Firma


5. PLANOS







PUENTE DE 7.00 y 6.00 M

- Tablero estructural contrachapado de madera de pino insigne (Pinus radiata), para uso exterior, según UNE-EN 636, de 18 mm de espesor, con bordes canteados, Euroclase D-s2, d0 de reacción al fuego, según UNE-EN 13501-1, clase E1 en emisión de formaldehído, según UNE-EN 13986. Cogidas con tornillo de cabeza avellanada, de 4,5 mm de diámetro y 50 mm de longitud, de acero al carbono, con tratamiento superficial a base de resina epoxi, para clases de servicio 1, 2 y 3 según UNE-EN 1995-1-1.
- Viga de madera laminada encolada homogénea de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 180x60 mm de sección, clase resistente GL-24h y clase E1 en emisión de formaldehído según UNE-EN 14080; para clase de uso 1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP1 según UNE-EN 351-1, con acabado cepillado.
- Viga de madera aserrada de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 100x40 mm de sección, clase resistente C18 según UNE-EN 338 y UNE-EN 1912, calidad estructural MEG según UNE 56544; para clase de uso 1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP1 según UNE-EN 351-1, con acabado cenillado.
- Pilar de madera aserrada de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 100x100 mm de sección, clase resistente C18 según UNE-EN 338 y UNE-EN 1912, calidad estructural MEG según UNE-E6544; para clase de uso 3.1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP2 según UNE-EN 351-1, con acabado cerillado.
- Tabla de madera aserrada de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 100x25 mm de sección, clase resistente C18 según UNE-EN 338 y UNE-EN 1912, calidad estructural MEG según UNE 56544; para clase de uso 1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP1 según UNE-EN 351-1, con acabado cepillado.
- (Pinus sylvestris) procedente de España con certificado PEFC, de 140x50 mm de sección, clase resistente C18 según UNE-EN 338 y UNE-EN 1912, calidad estructural MEG según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP1 según UNE-EN 351-1, con acabado cepillado.
- Pieza metálica vista de acero S250GD+Z con protección Z275 frente a la corrosión, con 41 mm de alas exteriores, desde 250x250 mm o inferior en la zona a conectar, fijada a la estructura portante de madera con 40 tornillos, y fijada a la viga o a la vigueta con 40 tornillos autoperforantes para madera, de 6 mm de diámetro y 60 mm de longitud, de acero galvanizado con revestimiento de cromo; para unión a cortante de extremo de viga o vigueta de madera
- Mampostería concertada 2 caras vistas, considerando mampuestos irregulares en bruto, colocados con mortero de cemento, incluso preparación de piedras, asiento y rejuntado con mortero de cemento, completamente terminado. En muros de hasta 50 cm de espesor y hasta 2 m de

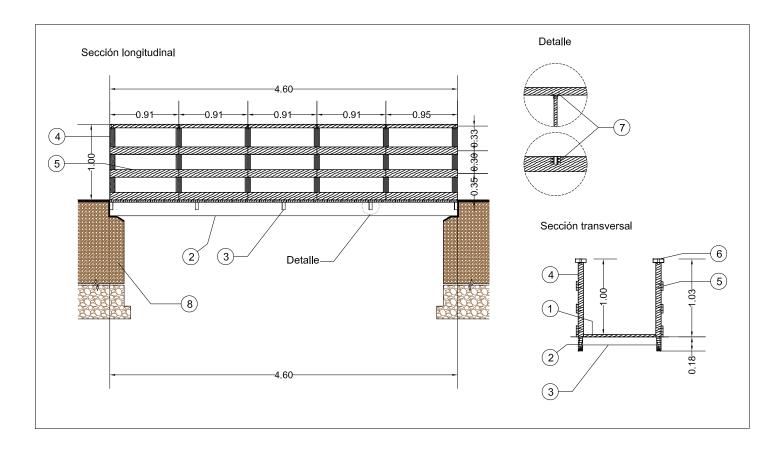
PROYECTO BÁSICO: ADECUACIÓN Y MEJORA DEL SENDERO RÍO DE LOS MOLINOS SL-A 148

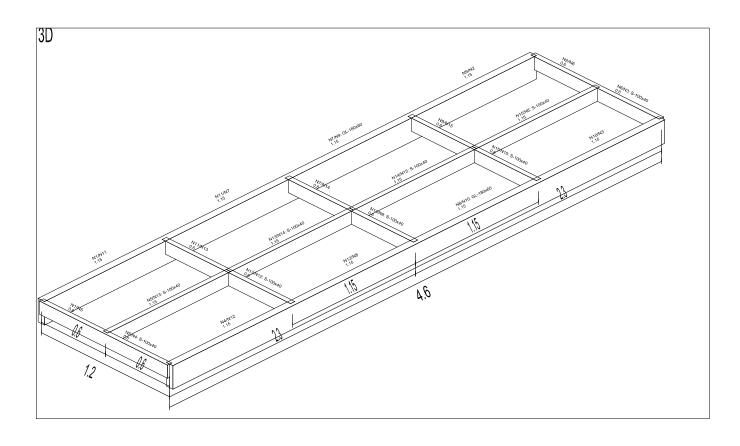
BAYÁRCAL (ALMERÍA)

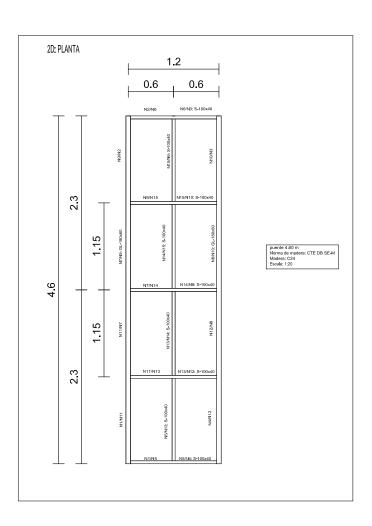
PLANO:
DETALLES PASARELAS 1 Y 2

JULIO 2025 ESCALA

FECHA


ECOTECNO CONSULTORES TÉCNICOS S.L.L.
ARQUITECTO REDACTOR:
Jose Antonio Sánchez Hernández 615 COAAL




05

PUENTE DE 4.60 M

- Tablero estructural contrachapado de madera de pino insigne (Pinus radiata), para uso exterior, según UNE-EN 636, de 18 mm de espesor, con bordes canteados, Euroclase D-s2, d0 de reacción al fuego, según UNE-EN 13501-1, clase E1 en emisión de formaldehído, según UNE-EN 13986. Cogidas con tornillo de cabeza avellanada, de 4,5 mm de diámetro y 50 mm de longitud, de acero al carbono, con tratamiento superficial a base de resina epoxi, para clases de servicio 1, 2 y 3 según UNF-FN 1995-1-1
- Viga de madera laminada encolada homogénea de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 180x60 mm de sección, clase resistente GL-24h y clase E1 en emisión de formaldehído según UNE-EN 14080; para clase de uso 1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP1 según UNE-EN 351-1, con acabado cepillado.
- 3 Viga de madera aserrada de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 100x40 mm de sección, clase resistente C18 según UNE-EN 338 y UNE-EN 1912, calidad estructural MEG según UNE 56544; para clase de uso 1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP1 según UNE-EN 351-1, con acabado
- 4) Pilar de madera aserrada de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 100x100 mm de sección, clase resistente C18 según UNE-EN 338 v UNE-EN 1912, calidad estructural MEG según UNE 56544; para clase de uso 3.1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP2 según UNE-EN 351-1, con acabado
- 5 Tabla de madera aserrada de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 100x25 mm de sección, clase resistente C18 según UNE-EN 338 y UNE-EN 1912, calidad estructural MÉG según UNE 56544; para clase de uso 1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP1 según UNE-EN 351-1, con acabado
- (6) Tabla de madera aserrada de pino silvestre (Pinus sylvestris) procedente de España con certificado PEFC, de 140x50 mm de sección, clase resistente C18 según UNE-EN 338 y UNE-EN 1912, calidad estructural MEG según UNE 56544; para clase de uso 1 según UNE-EN 335, con protección frente a agentes bióticos que se corresponde con la clase de penetración NP1 según UNE-EN 351-1, con acabado cepillado.
- 7) Pieza metálica vista de acero S250GD+Z con protección Z275 frente a la corrosión, con 41 mm de alas exteriores, desde 250x250 mm o inferior en la zona a conectar, fijada a la estructura portante de madera con 40 tornillos, y fijada a la viga o a la vigueta con 40 tornillos autoperforantes para madera, de 6 mm de diámetro y 60 mm de longitud, de acero galvanizado con revestimiento de cromo; para unión a cortante de extremo de viga o vigueta de
- 8 Mampostería concertada 2 caras vistas, considerando mampuestos irregulares en bruto, colocados con mortero de cemento. incluso preparación de piedras, asiento y rejuntado con mortero de cemento, completamente terminado. En muros de hasta 50 cm de espesor y hasta 2 m de

PROYECTO BÁSICO: ADECUACIÓN Y MEJORA DEL SENDERO RÍO DE LOS MOLINOS SL-A 148

BAYÁRCAL (ALMERÍA)

FECHA AYUNTAMIENTO DE BAYARCAL PLANO:

ESCALA

JULIO 2025

ECOTECNO CONSULTORES TÉCNICOS S.L.L. ARQUITECTO REDACTOR Jose Antonio Sánchez Hernández 615 COAAL

DETALLES PASARELA 3

6. ANEXOS DE CÁLCULO

ÍNDICE

1.	DATO	S DE OBRA	2
	1.1.	Normas consideradas	2
	1.2.	Estados límite	2
		1.2.1. Situaciones de proyecto	2
		1.2.2. Combinaciones	3
2.	ESTR	UCTURA	3
	2.1.	Geometría	3
		2.1.1. Nudos	3
		2.1.2. Barras	4
	2.2.	Cargas	6
		2.2.1. Barras	6
	2.3.	Resultados	
		2.3.1. Nudos	8
		2.3.2. Barras	12

puente 4.60 m Fecha: 03/07/25

1. DATOS DE OBRA

1.1. Normas consideradas

Madera: CTE DB SE-M

Categoría de uso: C. Zonas de acceso al público

1.2. Estados límite

E.L.U. de rotura. Madera	CTE
	Cota de nieve: Altitud inferior o igual a 1000 m
Desplazamientos	Acciones características

1.2.1. Situaciones de proyecto

Para las distintas situaciones de proyecto, las combinaciones de acciones se definirán de acuerdo con los siguientes criterios:

- Con coeficientes de combinación

$$\sum_{j\geq 1} \gamma_{Gj} G_{kj} + \gamma_P P_k + \gamma_{O1} \Psi_{P1} Q_{k1} + \sum_{j\geq 1} \gamma_{Oj} \Psi_{ai} Q_{ki}$$

- Sin coeficientes de combinación

$$\sum_{j\geq 1} \gamma_{Gj} G_{kj} + \gamma_P P_k + \sum_{i\geq 1} \gamma_{Qi} Q_{ki}$$

- Donde:

G_k Acción permanente

P_k Acción de pretensado

Q_k Acción variable

 γ_{G} Coeficiente parcial de seguridad de las acciones permanentes

γ_P Coeficiente parcial de seguridad de la acción de pretensado

 $\gamma_{0,1}$ Coeficiente parcial de seguridad de la acción variable principal

 $\gamma_{Q,i}$ Coeficiente parcial de seguridad de las acciones variables de acompañamiento

 $\psi_{p,1}$ Coeficiente de combinación de la acción variable principal

 $\psi_{a,i}$ Coeficiente de combinación de las acciones variables de acompañamiento

Para cada situación de proyecto y estado límite los coeficientes a utilizar serán:

E.L.U. de rotura. Madera: CTE DB SE-M

puente 4.60 m Fecha: 03/07/25

Persistente o transitoria											
	Coeficientes par	rciales de seguridad (γ)	Coeficientes	s de combinación (ψ)							
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)							
Carga permanente (G)	0.800	1.350	-	-							
Sobrecarga (Q)	0.000	1.500	1.000	0.700							

Desplazamientos

Característica										
	Coeficientes par	ciales de seguridad (γ)	Coeficientes	s de combinación (ψ)						
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)						
Carga permanente (G)	1.000	1.000	-	-						
Sobrecarga (Q)	0.000	1.000	1.000	1.000						

1.2.2. Combinaciones

- Nombres de las hipótesis

PP Peso propio

CM 1 CM 1

Q1 Q1

• E.L.U. de rotura. Madera

Comb.	PP	CM 1	Q 1
1	0.800	0.800	
2	1.350	0.800	
3	0.800	1.350	
4	1.350	1.350	
5	0.800	0.800	1.500
6	1.350	0.800	1.500
7	0.800	1.350	1.500
8	1.350	1.350	1.500

Desplazamientos

Comb.	PP	CM 1	Q 1
1	1.000	1.000	
2	1.000	1.000	1.000

2. ESTRUCTURA

2.1. Geometría

puente 4.60 m Fecha: 03/07/25

2.1.1. Nudos

Referencias:

 Δ_x , Δ_y , Δ_z : Desplazamientos prescritos en ejes globales.

 θ_x , θ_y , θ_z : Giros prescritos en ejes globales.

Cada grado de libertad se marca con 'X' si está coaccionado y, en caso contrario, con '-'.

	Nudos												
	Co	Vin	cula	ació	n e	xter							
Referencia	X	Υ	Z	Δ_{x}	Δ_{v}	Δ_{7}	θ_{x}	θν	θ,	Vinculación interior			
	(m)	(m)	(m)	Δx	Δу	Δz	U _X	Uy	Uz				
N1	0.000	0.000	0.000	Χ	Χ	Х	-	-	-	Empotrado			
N2	0.000	4.600	0.000	Χ	Χ	Х	-	-	-	Empotrado			
N3	1.200	4.600	0.000	Χ	Х	Х	-	-	-	Empotrado			
N4	1.200	0.000	0.000	Χ	Х	Х	-	_	-	Empotrado			
N5	0.600	0.000	0.000	-	-	-	-	-	-	Articulado			
N6	0.600	4.600	0.000	-	-	-	-	-	-	Articulado			
N7	0.000	2.300	0.000	-	-	-	-	-	-	Articulado			
N8	1.200	2.300	0.000	-	-	-	-	-	-	Articulado			
N9	0.000	3.450	0.000	-	-	-	-	-	-	Articulado			
N10	1.200	3.450	0.000	-	-	-	-	-	-	Articulado			
N11	0.000	1.150	0.000	-	-	-	-	-	-	Articulado			
N12	1.200	1.150	0.000	-	-	-	-	-	-	Articulado			
N13	0.600	1.150	0.000	-	_	-	-	_	-	Articulado			
N14	0.600	2.300	0.000	-	_	-	-	_	-	Articulado			
N15	0.600	3.450	0.000	-	-	-	-	-	-	Articulado			

2.1.2. Barras

2.1.2.1. Materiales utilizados

Materiales utilizados											
М	aterial	Е		G	$lpha_{\cdot t}$	γ					
Tipo	Designación	(kp/cm ²)	V	(kp/cm ²)	(m/m°C)	(t/m³)					
Madera	C24	112130.5	-	7033.6	0.000005	0.420					

Notación:

E: Módulo de elasticidad

n: Módulo de Poisson

G: Módulo de cortadura a.: Coeficiente de dilatación

g: Peso específico

puente 4.60 m Fecha: 03/07/25

2.1.2.2. Descripción

				Descripción					
Material Tipo Designación		Barra (Ni/Nf)	Pieza (Ni/Nf)	Perfil(Serie)	Longitud (m)	β_{xy}	β_{xz}	Lb _{Sup.}	Lb _{Inf.} (m)
Madera	C24	N1/N11	N1/N2	GL-180x60 (Laminada b60)	1.150	1.00	1.00	-	-
		N11/N7	N1/N2	GL-180x60 (Laminada b60)	1.150	1.00	1.00	-	-
		N7/N9	N1/N2	GL-180x60 (Laminada b60)	1.150	1.00	1.00	-	-
		N9/N2	N1/N2	GL-180x60 (Laminada b60)	1.150	1.00	1.00	-	-
		N2/N6	N2/N3	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N6/N3	N2/N3	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N4/N12	N4/N3	GL-180x60 (Laminada b60)	1.150	1.00	1.00	-	-
		N12/N8	N4/N3	GL-180x60 (Laminada b60)	1.150	1.00	1.00	-	-
		N8/N10	N4/N3	GL-180x60 (Laminada b60)	1.150	1.00	1.00	-	-
		N10/N3	N4/N3	GL-180x60 (Laminada b60)	1.150	1.00	1.00	-	-
		N1/N5	N1/N4	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N5/N4	N1/N4	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N7/N14	N7/N8	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N14/N8	N7/N8	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N9/N15	N9/N10	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N15/N10	N9/N10	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N11/N13	N11/N12	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N13/N12	N11/N12	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N15/N6	N15/N6	S-100x40 (Maciza h100)	1.150	1.00	1.00	-	-
		N14/N15	N14/N15	S-100x40 (Maciza h100)	1.150	1.00	1.00	-	-
		N13/N14	N13/N14	S-100x40 (Maciza h100)	1.150	1.00	1.00	-	-
		N5/N13	N5/N13	S-100x40 (Maciza h100)	1.150	1.00	1.00	-	-

Notación:

Ni: Nudo inicial Nf: Nudo final

b_{xy}: Coeficiente de pandeo en el plano 'XY'
b_{xz}: Coeficiente de pandeo en el plano 'XZ'
Lb_{sup}: Separación entre arriostramientos del ala superior
Lb_{int}: Separación entre arriostramientos del ala inferior

2.1.2.3. Características mecánicas

	Tipos de pieza											
Ref.	Piezas											
1	N1/N2 y N4/N3											
2	N2/N3, N1/N4, N7/N8, N9/N10, N11/N12, N15/N6, N14/N15, N13/N14 y N5/N13											

	Características mecánicas										
Material		Dof	Docarinción	Α	Avy	Avz	Iyy	Izz	It		
Tipo	Designación	Ref.	Descripción	(cm²)	(cm ²)	(cm²)	(cm4)	(cm4)	(cm4)		
Madera	C24	1	GL-180x60, (Laminada b60)	108.00	90.00	90.00	2916.00	324.00	1022.54		
		2	S-100x40, (Maciza h100)	40.00	33.33	33.33	333.33	53.33	157.44		

Notación: Ref.; Referencia

A: Área de la sección transversal

Avy: Área de la sección transversal Avy: Área de cortante de la sección según el eje local 'Y' Avz: Área de cortante de la sección según el eje local 'Z' Iyy: Inercia de la sección alrededor del eje local 'Y' Izz: Inercia a torsión

Las características mecánicas de las piezas corresponden a la sección en el punto medio de las mismas.

puente 4.60 m Fecha: 03/07/25

2.1.2.4. Tabla de medición

	Tabla de medición												
Material		Pieza	Perfil(Serie)	Longitud	Volumen	Peso							
Tipo	Designación	(Ni/Nf)	i cim(serie)	(m)	(m³)	(kg)							
Madera	C24	N1/N2	GL-180x60 (Laminada b60)	4.600	0.050	20.87							
		N2/N3	S-100x40 (Maciza h100)	1.200	0.005	2.02							
		N4/N3	GL-180x60 (Laminada b60)	4.600	0.050	20.87							
		N1/N4	S-100x40 (Maciza h100)	1.200	0.005	2.02							
		N7/N8	S-100x40 (Maciza h100)	1.200	0.005	2.02							
		N9/N10	S-100x40 (Maciza h100)	1.200	0.005	2.02							
		N11/N12	S-100x40 (Maciza h100)	1.200	0.005	2.02							
		N15/N6	S-100x40 (Maciza h100)	1.150	0.005	1.93							
		N14/N15	S-100x40 (Maciza h100)	1.150	0.005	1.93							
		N13/N14	S-100x40 (Maciza h100)	1.150	0.005	1.93							
		N5/N13	S-100x40 (Maciza h100)	1.150	0.005	1.93							
Notación: Ni: N	udo inicial												

Nf: Nudo final

2.1.2.5. Resumen de medición

	Resumen de medición											
M	laterial				Longitud	i		Volume	en		Peso	
Tipo	Designación	Serie	Perfil	Perfil (m)	Serie (m)	Material (m)	Perfil (m³)	Serie (m³)	Material (m³)	Perfil (kg)	Serie (kg)	Material (kg)
			GL-180x60	9.200			0.099			41.73		
		Laminada b60			9.200			0.099			41.73	
			S-100x40	10.600			0.042			17.81		
		Maciza h100			10.600			0.042			17.81	
Madera	C24					19.800			0.142			59.54

2.1.2.6. Medición de superficies

Madera: Medición de las superficies a pintar										
Serie	Perfil	Superficie unitaria (m²/m)	Longitud (m)	Superficie (m²)						
Laminada b60	GL-180x60	0.480	9.200	4.416						
Maciza h100	S-100x40	0.280	10.600	2.968						
			Total	7.384						

2.2. Cargas

2.2.1. Barras

Referencias:

'P1', 'P2':

- Cargas puntuales, uniformes, en faja y momentos puntuales: 'P1' es el valor de la carga. 'P2' no se utiliza.
- Cargas trapeciales: 'P1' es el valor de la carga en el punto donde comienza (L1) y 'P2' es el valor de la carga en el punto donde termina (L2).
- Cargas triangulares: 'P1' es el valor máximo de la carga. 'P2' no se utiliza.
- Incrementos de temperatura: 'P1' y 'P2' son los valores de la temperatura en las caras exteriores o paramentos de la pieza. La orientación de la variación del incremento de temperatura sobre la sección transversal dependerá de la dirección seleccionada.

'L1', 'L2':

puente 4.60 m Fecha: 03/07/25

- Cargas y momentos puntuales: 'L1' es la distancia entre el nudo inicial de la barra y la posición donde se aplica la carga. 'L2' no se utiliza.

- Cargas trapeciales, en faja, y triangulares: 'L1' es la distancia entre el nudo inicial de la barra y la posición donde comienza la carga, 'L2' es la distancia entre el nudo inicial de la barra y la posición donde termina la carga.

Unidades:

- Cargas puntuales: tMomentos puntuales: t⋅m.
- Cargas uniformes, en faja, triangulares y trapeciales: t/m.
- Incrementos de temperatura: °C.

			Cargas	s en	bar	ras				
			Valor	es	Posi	ción		Direc	ción	
Barra	Hipótesis	Tipo	P1	P2	L1 (m)	L2 (m)	Ejes	Х	Y	Z
N1/N11	Peso propio	Uniforme	0.005	-	-	-	Globales	0.000	0.000	-1.000
N1/N11	CM 1	Uniforme	0.006	-	-	-	Globales	0.000	0.000	-1.000
N1/N11	Q 1	Uniforme	0.030	-	-	-	Globales	0.000	0.000	-1.000
N11/N7	Peso propio	Uniforme	0.005	-	-	-	Globales	0.000	0.000	-1.000
N11/N7	CM 1	Uniforme	0.006	-	-	-	Globales	0.000	0.000	-1.000
N11/N7	Q 1	Uniforme	0.030	-	-	-	Globales	0.000	0.000	-1.000
N7/N9	Peso propio	Uniforme	0.005	-	-	-	Globales	0.000	0.000	-1.000
N7/N9	CM 1	Uniforme	0.006	-	-	-	Globales	0.000	0.000	-1.000
N7/N9	Q 1	Uniforme	0.030	-	-	-	Globales	0.000	0.000	-1.000
N9/N2	Peso propio	Uniforme	0.005	-	-	-	Globales	0.000	0.000	-1.000
N9/N2	CM 1	Uniforme	0.006	-	-	-	Globales	0.000	0.000	-1.000
N9/N2	Q 1	Uniforme	0.030	-	-	-	Globales	0.000	0.000	-1.000
N2/N6	Peso propio	Uniforme	0.002	-	-	-	Globales	0.000	0.000	-1.000
N6/N3	Peso propio	Uniforme	0.002	-	-	-	Globales	0.000	0.000	-1.000
N4/N12	Peso propio	Uniforme	0.005	-	-	-	Globales	0.000	0.000	-1.000
N4/N12	CM 1	Uniforme	0.006	-	-	-	Globales	0.000	0.000	-1.000
N4/N12	Q 1	Uniforme	0.030	-	-	-	Globales	0.000	0.000	-1.000
N12/N8	Peso propio	Uniforme	0.005	_	_	_	Globales	0.000	0.000	-1.000
N12/N8	CM 1	Uniforme	0.006	_	_	_	Globales	0.000	0.000	-1.000
N12/N8	Q 1	Uniforme	0.030	-	-	-	Globales	0.000	0.000	-1.000
N8/N10	Peso propio	Uniforme	0.005	_	_	_	Globales	0.000	0.000	-1.000
N8/N10	CM 1	Uniforme	0.006	-	_	_	Globales	0.000	0.000	-1.000
N8/N10	Q 1	Uniforme	0.030	_	_	_	Globales	0.000	0.000	-1.000
N10/N3	Peso propio	Uniforme	0.005	_	_	_	Globales	0.000	0.000	-1.000
N10/N3	CM 1	Uniforme	0.006	-	-	-	Globales	0.000	0.000	-1.000
N10/N3	Q 1	Uniforme	0.030	_	_	_	Globales	0.000	0.000	-1.000
N1/N5	Peso propio	Uniforme	0.002	_	_	_	Globales	0.000	0.000	-1.000
N5/N4	Peso propio	Uniforme	0.002	_	_	_	Globales	0.000	0.000	-1.000
N7/N14	Peso propio	Uniforme	0.002	-	_	_	Globales	0.000	0.000	-1.000
N14/N8	Peso propio	Uniforme		-	_	_	Globales			
N9/N15	Peso propio	Uniforme	0.002	_	_	_	Globales		0.000	-1.000
N15/N10	Peso propio	Uniforme	0.002	_	_	_	Globales	0.000	0.000	-1.000
N11/N13	Peso propio	Uniforme	0.002	_	_	_	Globales	0.000	0.000	-1.000
N13/N12	Peso propio	Uniforme	0.002	-	_	-	Globales	0.000	0.000	-1.000

puente 4.60 m Fecha: 03/07/25

			Cargas	s en	bar	ras				
			Valor	es	Posi	ción		Direc	ción	
Barra	Hipótesis	Tipo	P1	P2	L1 (m)	L2 (m)	Ejes	Х	Y	Z
N15/N6	Peso propio	Uniforme	0.002	-	-	-	Globales	0.000	0.000	-1.000
N15/N6	CM 1	Uniforme	0.013	-	-	-	Globales	0.000	0.000	-1.000
N15/N6	Q 1	Uniforme	0.061	-	-	-	Globales	0.000	0.000	-1.000
N14/N15	Peso propio	Uniforme	0.002	-	-	-	Globales	0.000	0.000	-1.000
N14/N15	CM 1	Uniforme	0.013	-	-	-	Globales	0.000	0.000	-1.000
N14/N15	Q 1	Uniforme	0.061	-	-	-	Globales	0.000	0.000	-1.000
N13/N14	Peso propio	Uniforme	0.002	-	-	-	Globales	0.000	0.000	-1.000
N13/N14	CM 1	Uniforme	0.013	-	-	-	Globales	0.000	0.000	-1.000
N13/N14	Q 1	Uniforme	0.061	-	-	-	Globales	0.000	0.000	-1.000
N5/N13	Peso propio	Uniforme	0.002	-	-	-	Globales	0.000	0.000	-1.000
N5/N13	CM 1	Uniforme	0.013	-	-	-	Globales	0.000	0.000	-1.000
N5/N13	Q 1	Uniforme	0.061	-	_	-	Globales	0.000	0.000	-1.000

2.3. Resultados

2.3.1. Nudos

2.3.1.1. Desplazamientos

Referencias:

 Dx , Dy , Dz : Desplazamientos de los nudos en ejes globales. Gx , Gy , Gz : Giros de los nudos en ejes globales.

2.3.1.1.1. Hipótesis

Desplazamientos de los nudos, por hipótesis											
				zamiento:	-						
Referencia	Descripción	Dx	Dy	Dz	Gx	Gy	Gz				
		(mm)	(mm)	(mm)	(mRad)	(mRad)	(mRad)				
N1	Peso propio	0.000	0.000	0.000	-0.762	0.019	0.000				
	CM 1	0.000	0.000	0.000	-1.514	0.060	-0.005				
	Q 1	0.000	0.000	0.000	-7.282	0.287	-0.023				
N2	Peso propio	0.000	0.000	0.000	0.762	0.019	0.000				
	CM 1	0.000	0.000	0.000	1.514	0.060	0.005				
	Q 1	0.000	0.000	0.000	7.282	0.287	0.023				
N3	Peso propio	0.000	0.000	0.000	0.762	-0.019	0.000				
	CM 1	0.000	0.000	0.000	1.514	-0.060	-0.005				
	Q 1	0.000	0.000	0.000	7.282	-0.287	-0.023				
N4	Peso propio	0.000	0.000	0.000	-0.762	-0.019	0.000				
	CM 1	0.000	0.000	0.000	-1.514	-0.060	0.005				
	Q 1	0.000	0.000	0.000	-7.282	-0.287	0.023				
N5	Peso propio	0.000	-0.004	-0.013	-	-	-				
	CM 1	0.000	-0.032	-0.045	-	-	-				
	Q 1	0.000	-0.153	-0.215	-	-	-				
N6	Peso propio	0.000	0.004	-0.013	-	-	-				
	CM 1	0.000	0.032	-0.045	_	-	-				
	Q 1	0.000	0.153	-0.215	-	-	-				
N7	Peso propio	-0.003	0.000	-1.126	-	-	-				
	CM 1	-0.014	0.000	-2.243	_	_	_				
	Q 1	-0.068	0.000	-10.788	_	-	-				

puente 4.60 m Fecha: 03/07/25

	Desplazamientos de los nudos, por hipótesis												
			Despla	zamiento	s en ejes	globales							
Referencia	Descripción	Dx	Dy	Dz	Gx	Gy	Gz						
		(mm)	(mm)	(mm)	(mRad)	(mRad)	(mRad)						
N8	Peso propio	0.003	0.000	-1.126	-	-	-						
	CM 1	0.014	0.000	-2.243	-	-	-						
	Q 1	0.068	0.000	-10.788	-	-	-						
N9	Peso propio	-0.003	0.000	-0.802	-	-	-						
	CM 1	-0.014	0.000	-1.598	-	-	-						
	Q 1	-0.066	0.000	-7.686	-	-	-						
N10	Peso propio	0.003	0.000	-0.802	-	-	-						
	CM 1	0.014	0.000	-1.598	-	-	-						
	Q 1	0.066	0.000	-7.686	-	-	-						
N11	Peso propio	-0.003	0.000	-0.802	-	-	-						
	CM 1	-0.014	0.000	-1.598	-	-	-						
	Q 1	-0.066	0.000	-7.686	_	-	-						
N12	Peso propio	0.003	0.000	-0.802	-	-	-						
	CM 1	0.014	0.000	-1.598	-	-	-						
	Q 1	0.066	0.000	-7.686	_	-	-						
N13	Peso propio	0.000	-0.002	-0.837	-	-	-						
	CM 1	0.000	-0.016	-1.755	_	-	-						
	Q 1	0.000	-0.076	-8.442	_	-	-						
N14	Peso propio	0.000	0.000	-1.160	-	-	-						
	CM 1	0.000	0.000	-2.402	-	-	-						
	Q 1	0.000	0.000	-11.551	_	_	-						
N15	Peso propio	0.000	0.002	-0.837	-	-	-						
	CM 1	0.000	0.016	-1.755	_	-	-						
	Q 1	0.000	0.076	-8.442	_	-	-						

2.3.1.1.2. Combinaciones

	Desplaza	amientos de	los nud	os, por	combina	ación		
	Combina	ción		Despla	zamiento	s en ejes	globales	
Referencia	Tipo	Descripción	Dx (mm)	Dy (mm)	Dz (mm)	Gx (mRad)	Gy (mRad)	Gz (mRad)
N1	Desplazamientos	PP+CM1	0.000	0.000	0.000	-2.276	0.079	-0.004
		PP+CM1+Q1	0.000	0.000	0.000	-9.558	0.366	-0.028
N2	Desplazamientos	PP+CM1	0.000	0.000	0.000	2.276	0.079	0.004
		PP+CM1+Q1	0.000	0.000	0.000	9.558	0.366	0.028
N3	Desplazamientos	PP+CM1	0.000	0.000	0.000	2.276	-0.079	-0.004
		PP+CM1+Q1	0.000	0.000	0.000	9.558	-0.366	-0.028
N4	Desplazamientos	PP+CM1	0.000	0.000	0.000	-2.276	-0.079	0.004
		PP+CM1+Q1	0.000	0.000	0.000	-9.558	-0.366	0.028
N5	Desplazamientos	PP+CM1	0.000	-0.036	-0.058	-	-	-
		PP+CM1+Q1	0.000	-0.189	-0.272	-	-	-
N6	Desplazamientos	PP+CM1	0.000	0.036	-0.058	-	-	-
		PP+CM1+Q1	0.000	0.189	-0.272	-	-	-
N7	Desplazamientos	PP+CM1	-0.017	0.000	-3.369	-	_	_
		PP+CM1+Q1	-0.085	0.000	-14.157	-	-	-

puente 4.60 m Fecha: 03/07/25

	Desplaza	amientos de	los nud	los, por	combin	ación		
	Combina	ición		Despla	zamiento	s en ejes	globales	
Referencia	Tipo	Descripción	Dx (mm)	Dy (mm)	Dz (mm)	Gx (mRad)	Gy (mRad)	Gz (mRad)
N8	Desplazamientos	PP+CM1	0.017	0.000	-3.369	-	-	-
		PP+CM1+Q1	0.085	0.000	-14.157	-	-	-
N9	Desplazamientos	PP+CM1	-0.017	0.000	-2.401	-	-	-
		PP+CM1+Q1	-0.083	0.000	-10.087	-	-	-
N10	Desplazamientos	PP+CM1	0.017	0.000	-2.401	-	-	-
		PP+CM1+Q1	0.083	0.000	-10.087	-	-	-
N11	Desplazamientos	PP+CM1	-0.017	0.000	-2.401	-	-	-
		PP+CM1+Q1	-0.083	0.000	-10.087	-	-	-
N12	Desplazamientos	PP+CM1	0.017	0.000	-2.401	-	-	-
		PP+CM1+Q1	0.083	0.000	-10.087	-	-	-
N13	Desplazamientos	PP+CM1	0.000	-0.018	-2.592	-	-	-
		PP+CM1+Q1	0.000	-0.094	-11.034	-	-	-
N14	Desplazamientos	PP+CM1	0.000	0.000	-3.562	-	-	-
		PP+CM1+Q1	0.000	0.000	-15.114	-	-	-
N15	Desplazamientos	PP+CM1	0.000	0.018	-2.592	-	-	-
		PP+CM1+Q1	0.000	0.094	-11.034	-	-	-

2.3.1.1.3. Envolventes

	Envolvente de los desplazamientos en nudos Combinación Desplazamientos en ejes globales												
		Combinación		Despla	azamiento	s en ejes	globales						
Referencia	Tipo	Descripción	Dx (mm)	Dy (mm)	Dz (mm)	Gx (mRad)	Gy (mRad)	Gz (mRad)					
N1	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	0.000	-9.558	0.079	-0.028					
		Valor máximo de la envolvente	0.000	0.000	0.000	-2.276	0.366	-0.004					
N2	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	0.000	2.276	0.079	0.004					
		Valor máximo de la envolvente	0.000	0.000	0.000	9.558	0.366	0.028					
N3	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	0.000	2.276	-0.366	-0.028					
		Valor máximo de la envolvente	0.000	0.000	0.000	9.558	-0.079	-0.004					
N4	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	0.000	-9.558	-0.366	0.004					
		Valor máximo de la envolvente	0.000	0.000	0.000	-2.276	-0.079	0.028					
N5	Desplazamientos	Valor mínimo de la envolvente	0.000	-0.189	-0.272	-	-	-					
		Valor máximo de la envolvente	0.000	-0.036	-0.058	-	-	-					
N6	Desplazamientos	Valor mínimo de la envolvente	0.000	0.036	-0.272	-	-	-					
		Valor máximo de la envolvente	0.000	0.189	-0.058	-	-	-					
N7	Desplazamientos	Valor mínimo de la envolvente	-0.085	0.000	-14.157	-	-	-					
		Valor máximo de la envolvente	-0.017	0.000	-3.369	-	-	-					
N8	Desplazamientos	Valor mínimo de la envolvente	0.017	0.000	-14.157	-	-	-					
		Valor máximo de la envolvente	0.085	0.000	-3.369	-	-	-					
N9	Desplazamientos	Valor mínimo de la envolvente	-0.083	0.000	-10.087	-	-	-					
		Valor máximo de la envolvente	-0.017	0.000	-2.401	-	-	-					
N10	Desplazamientos	Valor mínimo de la envolvente	0.017	0.000	-10.087	-	-	-					
		Valor máximo de la envolvente	0.083	0.000	-2.401	-	-	-					
N11	Desplazamientos	Valor mínimo de la envolvente	-0.083	0.000	-10.087	-	-	-					
		Valor máximo de la envolvente	-0.017	0.000	-2.401	-	-	-					
N12	Desplazamientos	Valor mínimo de la envolvente	0.017	0.000	-10.087	-	-	-					
		Valor máximo de la envolvente	0.083	0.000	-2.401	-	-	-					
N13	Desplazamientos	Valor mínimo de la envolvente	0.000	-0.094	-11.034	-	-	-					
		Valor máximo de la envolvente	0.000	-0.018	-2.592	-	-	-					
N14	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	-15.114	-	-	-					

puente 4.60 m Fecha: 03/07/25

	Envolvente de los desplazamientos en nudos										
		Desplazamientos en ejes globales									
Referencia	Tipo	Descripción	Dx (mm)	Dy (mm)	Dz (mm)	Gx (mRad)	Gy (mRad)	Gz (mRad)			
		Valor máximo de la envolvente	0.000	0.000	-3.562	-	-	-			
N15	Desplazamientos	Valor mínimo de la envolvente	0.000	0.018	-11.034	-	-	-			
		Valor máximo de la envolvente	0.000	0.094	-2.592	-	-	-			

2.3.1.2. Reacciones

Referencias:

Rx, Ry, Rz: Reacciones en nudos con desplazamientos coaccionados (fuerzas). Mx, My, Mz: Reacciones en nudos con giros coaccionados (momentos).

2.3.1.2.1. Hipótesis

	Reacciones	s en los	nudos,	por h	ipótesi	is	
			Reaccio	nes en	ejes glo	obales	
Referencia	Descripción	Rx	Ry	Rz	Mx	Му	Mz
		(t)	(t)	(t)	(t·m)	(t·m)	(t·m)
N1	Peso propio	0.006	0.000	0.015	0.000	0.000	0.000
	CM 1	0.018	0.001	0.029	0.000	0.000	0.000
	Q 1	0.087	0.004	0.139	0.000	0.000	0.000
N2	Peso propio	0.006	0.000	0.015	0.000	0.000	0.000
	CM 1	0.018	-0.001	0.029	0.000	0.000	0.000
	Q 1	0.087	-0.004	0.139	0.000	0.000	0.000
N3	Peso propio	-0.006	0.000	0.015	0.000	0.000	0.000
	CM 1	-0.018	-0.001	0.029	0.000	0.000	0.000
	Q 1	-0.087	-0.004	0.139	0.000	0.000	0.000
N4	Peso propio	-0.006	0.000	0.015	0.000	0.000	0.000
	CM 1	-0.018	0.001	0.029	0.000	0.000	0.000
	Q 1	-0.087	0.004	0.139	0.000	0.000	0.000

2.3.1.2.2. Combinaciones

	Reacci	iones en los nudos, por c	ombina	ción				
	Combin	ación		Reaccio	nes en	ejes glo	bales	
Referencia	Tipo	Descripción	Rx (t)	Ry (t)	Rz (t)	Mx (t·m)	My (t·m)	Mz (t·m)
N1	Hormigón en cimentaciones	PP+CM1	0.024	0.001	0.044	0.000	0.000	0.000
		1.6·PP+CM1	0.027	0.001	0.053	0.000	0.000	0.000
		PP+1.6·CM1	0.035	0.001	0.061	0.000	0.000	0.000
		1.6·PP+1.6·CM1	0.038	0.001	0.070	0.000	0.000	0.000
		PP+CM1+1.6·Q1	0.164	0.007	0.267	0.000	0.000	0.000
		1.6·PP+CM1+1.6·Q1	0.167	0.007	0.276	0.000	0.000	0.000
		PP+1.6·CM1+1.6·Q1	0.175	0.007	0.284	0.000	0.000	0.000
		1.6·PP+1.6·CM1+1.6·Q1	0.178	0.008	0.293	0.000	0.000	0.000
	Tensiones sobre el terreno	PP+CM1	0.024	0.001	0.044	0.000	0.000	0.000
		PP+CM1+Q1	0.111	0.005	0.183	0.000	0.000	0.000
N2	Hormigón en cimentaciones	PP+CM1	0.024	-0.001	0.044	0.000	0.000	0.000
		1.6·PP+CM1	0.027	-0.001	0.053	0.000	0.000	0.000
		PP+1.6·CM1	0.035	-0.001	0.061	0.000	0.000	0.000
		1.6·PP+1.6·CM1	0.038	-0.001	0.070	0.000	0.000	0.000
		PP+CM1+1.6·Q1	0.164	-0.007	0.267	0.000	0.000	0.000
		1.6·PP+CM1+1.6·Q1	0.167	-0.007	0.276	0.000	0.000	0.000
		PP+1.6·CM1+1.6·Q1	0.175	-0.007	0.284	0.000	0.000	0.000

puente 4.60 m Fecha: 03/07/25

	Reacci	iones en los nudos, por c	combina	ción				
	Combin	ación		Reaccio	nes en	ejes glo	bales	
Referencia	Tipo	Descripción	Rx (t)	Ry (t)	Rz (t)	Mx (t·m)	My (t·m)	Mz (t·m)
		1.6·PP+1.6·CM1+1.6·Q1	0.178	-0.008	0.293	0.000	0.000	0.000
	Tensiones sobre el terreno	PP+CM1	0.024	-0.001	0.044	0.000	0.000	0.000
		PP+CM1+Q1	0.111	-0.005	0.183	0.000	0.000	0.000
N3	Hormigón en cimentaciones	PP+CM1	-0.024	-0.001	0.044	0.000	0.000	0.000
		1.6·PP+CM1	-0.027	-0.001	0.053	0.000	0.000	0.000
		PP+1.6·CM1	-0.035	-0.001	0.061	0.000	0.000	0.000
		1.6·PP+1.6·CM1	-0.038	-0.001	0.070	0.000	0.000	0.000
		PP+CM1+1.6·Q1	-0.164	-0.007	0.267	0.000	0.000	0.000
		1.6·PP+CM1+1.6·Q1	-0.167	-0.007	0.276	0.000	0.000	0.000
		PP+1.6·CM1+1.6·Q1	-0.175	-0.007	0.284	0.000	0.000	0.000
		1.6·PP+1.6·CM1+1.6·Q1	-0.178	-0.008	0.293	0.000	0.000	0.000
	Tensiones sobre el terreno	PP+CM1	-0.024	-0.001	0.044	0.000	0.000	0.000
		PP+CM1+Q1	-0.111	-0.005	0.183	0.000	0.000	0.000
N4	Hormigón en cimentaciones	PP+CM1	-0.024	0.001	0.044	0.000	0.000	0.000
		1.6·PP+CM1	-0.027	0.001	0.053	0.000	0.000	0.000
		PP+1.6·CM1	-0.035	0.001	0.061	0.000	0.000	0.000
		1.6·PP+1.6·CM1	-0.038	0.001	0.070	0.000	0.000	0.000
		PP+CM1+1.6·Q1	-0.164	0.007	0.267	0.000	0.000	0.000
		1.6·PP+CM1+1.6·Q1	-0.167	0.007	0.276	0.000	0.000	0.000
		PP+1.6·CM1+1.6·Q1	-0.175	0.007	0.284	0.000	0.000	0.000
		1.6·PP+1.6·CM1+1.6·Q1	-0.178	0.008	0.293	0.000	0.000	0.000
	Tensiones sobre el terreno	PP+CM1	-0.024	0.001	0.044	0.000	0.000	0.000
		PP+CM1+Q1	-0.111	0.005	0.183	0.000	0.000	0.000

Nota: Las combinaciones de hormigón indicadas son las mismas que se utilizan para comprobar el estado límite de equilibrio en la cimentación.

2.3.1.2.3. Envolventes

	Er	nvolventes de las reacciones e	n nudos	1				
	Com	binación		Reacci	ones en	ejes glo	bales	
Referencia	Tipo	Descripción	Rx (t)	Ry (t)	Rz (t)	Mx (t·m)	My (t·m)	Mz (t·m)
N1	Hormigón en cimentaciones	Valor mínimo de la envolvente	0.024	0.001	0.044	0.000	0.000	0.000
		Valor máximo de la envolvente	0.178	0.008	0.293	0.000	0.000	0.000
	Tensiones sobre el terreno	Valor mínimo de la envolvente	0.024	0.001	0.044	0.000	0.000	0.000
		Valor máximo de la envolvente	0.111	0.005	0.183	0.000	0.000	0.000
N2	Hormigón en cimentaciones	Valor mínimo de la envolvente	0.024	-0.008	0.044	0.000	0.000	0.000
		Valor máximo de la envolvente	0.178	-0.001	0.293	0.000	0.000	0.000
	Tensiones sobre el terreno	Valor mínimo de la envolvente	0.024	-0.005	0.044	0.000	0.000	0.000
		Valor máximo de la envolvente	0.111	-0.001	0.183	0.000	0.000	0.000
N3	Hormigón en cimentaciones	Valor mínimo de la envolvente	-0.178	-0.008	0.044	0.000	0.000	0.000
		Valor máximo de la envolvente	-0.024	-0.001	0.293	0.000	0.000	0.000
	Tensiones sobre el terreno	Valor mínimo de la envolvente	-0.111	-0.005	0.044	0.000	0.000	0.000
		Valor máximo de la envolvente	-0.024	-0.001	0.183	0.000	0.000	0.000
N4	Hormigón en cimentaciones	Valor mínimo de la envolvente	-0.178	0.001	0.044	0.000	0.000	0.000
		Valor máximo de la envolvente	-0.024	0.008	0.293	0.000	0.000	0.000
	Tensiones sobre el terreno	Valor mínimo de la envolvente	-0.111	0.001	0.044	0.000	0.000	0.000
		Valor máximo de la envolvente	-0.024	0.005	0.183	0.000	0.000	0.000

Nota: Las combinaciones de hormigón indicadas son las mismas que se utilizan para comprobar el estado límite de equilibrio en la cimentación.

Fecha: 03/07/25 puente 4.60 m

2.3.2. Barras

2.3.2.1. Esfuerzos

Referencias:

N: Esfuerzo axil (t)

Vy: Esfuerzo cortante según el eje local Y de la barra. (t) Vz: Esfuerzo cortante según el eje local Z de la barra. (t)

Mt: Momento torsor (t⋅m)

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de la barra). (t·m) Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de la barra). (t·m)

2.3.2.1.1. Hipótesis

		E	sfuerzos	en barra	as, por hi	pótesis			
Parra	Hipótesis	Ecfuerze			Posicio	ones en la	barra		
Barra	піросезіѕ	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N1/N11	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.013	-0.013	-0.012	-0.011	-0.010	-0.009	-0.008
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.002	0.005	0.007	0.009	0.011	0.012
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.025	-0.024	-0.023	-0.022	-0.021	-0.019	-0.018
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.005	0.009	0.014	0.018	0.021	0.025
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz	-0.122	-0.116	-0.110	-0.105	-0.099	-0.093	-0.087
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.023	0.045	0.065	0.085	0.103	0.120
		Mz	0.001	0.001	0.000	0.000	0.000	0.000	-0.001

		E	sfuerzos	en barra	as, por hi	pótesis			
Darra	Hipótesis	Ecfuerze			Posicio	ones en la	barra		
Barra	nipotesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N11/N7	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.006	-0.005	-0.004	-0.004	-0.003	-0.002	-0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.012	0.014	0.014	0.015	0.016	0.016	0.017
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.011	-0.010	-0.008	-0.007	-0.006	-0.005	-0.004
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.025	0.027	0.029	0.030	0.031	0.033	0.033
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001

	Esfuerzos en barras, por hipótesis										
Darra	Hinátosis	Ecfuerzo	Posiciones en la barra				barra				
Barra	Hipótesis	sis Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
		Vz	-0.052	-0.046	-0.041	-0.035	-0.029	-0.023	-0.017		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Му	0.120	0.130	0.138	0.145	0.151	0.156	0.160		
		Mz	-0.001	0.000	0.000	0.000	0.000	0.000	0.000		

		[Esfuerzo	s en barr	as, por h	ipótesis			
Parra	Linátosis	Ecfuerzo			Posicio	ones en la	barra		
Barra	Hipótesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N7/N9	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	0.001	0.002	0.003	0.004	0.004	0.005	0.006
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.017	0.016	0.016	0.015	0.014	0.014	0.012
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	0.004	0.005	0.006	0.007	0.008	0.010	0.011
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.033	0.033	0.031	0.030	0.029	0.027	0.025
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz	0.017	0.023	0.029	0.035	0.041	0.046	0.052
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.160	0.156	0.151	0.145	0.138	0.130	0.120
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	-0.001

			Esfuerzo	s en barr	as, por h	ipótesis			
Barra	Hipótesis	Esfuerzo			Posicio	ones en la	barra		
Darra	Tilpotesis	LSIUEIZO	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N9/N2	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	0.008	0.009	0.010	0.011	0.012	0.013	0.013
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.012	0.011	0.009	0.007	0.005	0.002	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	0.018	0.019	0.021	0.022	0.023	0.024	0.025
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.025	0.021	0.018	0.014	0.009	0.005	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vz	0.087	0.093	0.099	0.105	0.110	0.116	0.122

	Esfuerzos en barras, por hipótesis										
Barra	∐inátosis	Ecfuerzo	Posiciones en la barra								
Darra	Hipótesis Esfuerz	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Му	0.120	0.103	0.085	0.065	0.045	0.023	0.000		
		Mz	-0.001	0.000	0.000	0.000	0.000	0.001	0.001		

	Esfuerzo	s en barr	as, por h	ipótesis	
Barra	Hinátosis	Ecfuerzo	Posicio	ones en la	barra
Dalla	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m
N2/N6	Peso propio	N	-0.006	-0.006	-0.006
		Vy	0.000	0.000	0.000
		Vz	-0.001	-0.001	0.000
		Mt	0.000	0.000	0.000
		Му	0.000	0.000	0.000
		Mz	0.000	0.000	0.000
	CM 1	N	-0.018	-0.018	-0.018
		Vy	0.001	0.001	0.001
		Vz	-0.004	-0.004	-0.004
		Mt	0.000	0.000	0.000
		Му	-0.001	0.000	0.001
		Mz	0.000	0.000	0.000
	Q 1	N	-0.086	-0.086	-0.086
		Vy	0.004	0.004	0.004
		Vz	-0.017	-0.017	-0.017
		Mt	0.000	0.000	0.000
		Му	-0.003	0.002	0.007
		Mz	0.001	0.000	-0.001

	Esfuerzo	s en barr	as, por h	ipótesis																		
Parra	∐inátosis	Ecfuerzo	Posicio	ones en la	barra																	
Barra	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m																	
N6/N3	Peso propio	N	-0.006	-0.006	-0.006																	
		Vy	0.000	0.000	0.000																	
		Vz	0.000	0.001	0.001																	
		Mt	0.000	0.000	0.000																	
		Му	0.000	0.000	0.000																	
		Mz	0.000	0.000	0.000																	
	CM 1	N	-0.018	-0.018	-0.018																	
		Vy	-0.001	-0.001	-0.001																	
		Vz	0.004	0.004	0.004																	
		Mt	0.000	0.000	0.000																	
		Му	0.001	0.000	-0.001																	
																			Mz	0.000	0.000	0.000
	Q 1	N	-0.086	-0.086	-0.086																	
		Vy	-0.004	-0.004	-0.004																	
		Vz	0.017	0.017	0.017																	
		Mt	0.000	0.000	0.000																	

	Esfuerzos en barras, por hipótesis										
Darra	Hinátosis	Ecfuerzo	Posiciones en la barra								
Barra	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m						
		Му	0.007	0.002	-0.003						
		Mz	-0.001	0.000	0.001						

		E	sfuerzos	en barra	as, por hi	pótesis			
Вочно	Hinátosia	Faf			Posicio	ones en la	barra		
Barra	Hipótesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N4/N12	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.013	-0.013	-0.012	-0.011	-0.010	-0.009	-0.008
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.002	0.005	0.007	0.009	0.011	0.012
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.025	-0.024	-0.023	-0.022	-0.021	-0.019	-0.018
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.005	0.009	0.014	0.018	0.021	0.025
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vz	-0.122	-0.116	-0.110	-0.105	-0.099	-0.093	-0.087
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.023	0.045	0.065	0.085	0.103	0.120
		Mz	-0.001	-0.001	0.000	0.000	0.000	0.000	0.001

		E	sfuerzos	en barra	as, por hi	pótesis			
Barra	Hipótesis	Esfuerzo			Posicio	ones en la	barra		
Dalla	піросезіѕ	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N12/N8	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.006	-0.005	-0.004	-0.004	-0.003	-0.002	-0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.012	0.014	0.014	0.015	0.016	0.016	0.017
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.011	-0.010	-0.008	-0.007	-0.006	-0.005	-0.004
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.025	0.027	0.029	0.030	0.031	0.033	0.033
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz	-0.052	-0.046	-0.041	-0.035	-0.029	-0.023	-0.017
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.120	0.130	0.138	0.145	0.151	0.156	0.160

Esfuerzos en barras, por hipótesis									
Воми	Llinátocia	Cofor		Posiciones en la barra					
Barra	Hipótesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
		Mz	0.001	0.000	0.000	0.000	0.000	0.000	0.000

		E	sfuerzos	en barra	as, por hi	pótesis			
Barra	Hipótesis	Esfuerzo			Posicio	ones en la	barra		
Dalla	Tilpotesis	LSIUEIZO	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N8/N10	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	0.001	0.002	0.003	0.004	0.004	0.005	0.006
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.017	0.016	0.016	0.015	0.014	0.014	0.012
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	0.004	0.005	0.006	0.007	0.008	0.010	0.011
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.033	0.033	0.031	0.030	0.029	0.027	0.025
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vz	0.017	0.023	0.029	0.035	0.041	0.046	0.052
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.160	0.156	0.151	0.145	0.138	0.130	0.120
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.001

		E	sfuerzos	en barra	as, por hi	pótesis			
	/					ones en la	barra		
Barra	Hipótesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N10/N3	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	0.008	0.009	0.010	0.011	0.012	0.013	0.013
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.012	0.011	0.009	0.007	0.005	0.002	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	0.018	0.019	0.021	0.022	0.023	0.024	0.025
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.025	0.021	0.018	0.014	0.009	0.005	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz	0.087	0.093	0.099	0.105	0.110	0.116	0.122
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.120	0.103	0.085	0.065	0.045	0.023	0.000
		Mz	0.001	0.000	0.000	0.000	0.000	-0.001	-0.001

	Esfuerzo	s en barr	as, por h	ipótesis	
Darra	Linátosis	Ecfuerzo	Posicio	ones en la	barra
Barra	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m
N1/N5	Peso propio	N	-0.006	-0.006	-0.006
		Vy	0.000	0.000	0.000
		Vz	-0.001	-0.001	0.000
		Mt	0.000	0.000	0.000
		Му	0.000	0.000	0.000
		Mz	0.000	0.000	0.000
	CM 1	N	-0.018	-0.018	-0.018
		Vy	-0.001	-0.001	-0.001
		Vz	-0.004	-0.004	-0.004
		Mt	0.000	0.000	0.000
		Му	-0.001	0.000	0.001
		Mz	0.000	0.000	0.000
	Q 1	N	-0.086	-0.086	-0.086
		Vy	-0.004	-0.004	-0.004
		Vz	-0.017	-0.017	-0.017
		Mt	0.000	0.000	0.000
		Му	-0.003	0.002	0.007
		Mz	-0.001	0.000	0.001

	Esfuerzo	s en barr	as, por h	ipótesis	
Parra	Linátosis	Ecfuerzo	Posicio	ones en la	barra
Barra	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m
N5/N4	Peso propio	N	-0.006	-0.006	-0.006
		Vy	0.000	0.000	0.000
		Vz	0.000	0.001	0.001
		Mt	0.000	0.000	0.000
		Му	0.000	0.000	0.000
		Mz	0.000	0.000	0.000
	CM 1	N	-0.018	-0.018	-0.018
		Vy	0.001	0.001	0.001
		Vz	0.004	0.004	0.004
		Mt	0.000	0.000	0.000
		Му	0.001	0.000	-0.001
		Mz	0.000	0.000	0.000
	Q 1	N	-0.086	-0.086	-0.086
		Vy	0.004	0.004	0.004
		Vz	0.017	0.017	0.017
		Mt	0.000	0.000	0.000
		Му	0.007	0.002	-0.003
		Mz	0.001	0.000	-0.001

	Esfuerzos	en barra	as, por hi	pótesis	
Barra	Linátosis	Esfuerzo	Posicio	ones en la	barra
Dalla	Hipótesis	Estuerzo	0.000 m	0.300 m	0.600 m
N7/N14	Peso propio	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	-0.002	-0.001	-0.001
		Mt	0.000	0.000	0.000
		Му	0.000	0.001	0.001
		Mz	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	-0.007	-0.007	-0.007
		Mt	0.000	0.000	0.000
		Му	0.000	0.002	0.004
		Mz	0.000	0.000	0.000
	Q 1	N	0.001	0.001	0.001
		Vy	0.000	0.000	0.000
		Vz	-0.035	-0.035	-0.035
		Mt	0.000	0.000	0.000
		Му	0.000	0.011	0.021
		Mz	0.000	0.000	0.000

	Esfuerzos	en barra	as, por hi	pótesis	
Barra	Hipótesis	Esfuerzo	Posicio	ones en la	barra
Dalla	Tilpotesis	LSIUEIZO	0.000 m	0.300 m	0.600 m
N14/N8	Peso propio	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	0.001	0.001	0.002
		Mt	0.000	0.000	0.000
		Му	0.001	0.001	0.000
		Mz	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	0.007	0.007	0.007
		Mt	0.000	0.000	0.000
		Му	0.004	0.002	0.000
		Mz	0.000	0.000	0.000
	Q 1	N	0.001	0.001	0.001
		Vy	0.000	0.000	0.000
		Vz	0.035	0.035	0.035
		Mt	0.000	0.000	0.000
		Му	0.021	0.011	0.000
		Mz	0.000	0.000	0.000

	Esfuerzos	en barra	as, por hi	pótesis	
Darra	Linátosis	Esfuerzo	Posicio	ones en la	barra
Barra	Hipótesis	Estuerzo	0.000 m	0.300 m	0.600 m
N9/N15	Peso propio	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	-0.002	-0.001	-0.001
		Mt	0.000	0.000	0.000
		Му	0.000	0.001	0.001
		Mz	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	-0.007	-0.007	-0.007
		Mt	0.000	0.000	0.000
		Му	0.000	0.002	0.004
		Mz	0.000	0.000	0.000
	Q 1	N	-0.002	-0.002	-0.002
		Vy	0.001	0.001	0.001
		Vz	-0.035	-0.035	-0.035
		Mt	0.000	0.000	0.000
		Му	0.000	0.010	0.021
		Mz	0.000	0.000	0.000

	Esfuerzos	en barra	s, por hi _l	oótesis	
Parra	Linátosis	Esfuerzo	Posicio	ones en la	barra
Barra	Hipótesis	Estuerzo	0.000 m	0.300 m	0.600 m
N15/N10	Peso propio	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	0.001	0.001	0.002
		Mt	0.000	0.000	0.000
		Му	0.001	0.001	0.000
		Mz	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	0.007	0.007	0.007
		Mt	0.000	0.000	0.000
		Му	0.004	0.002	0.000
		Mz	0.000	0.000	0.000
	Q 1	N	-0.002	-0.002	-0.002
		Vy	-0.001	-0.001	-0.001
		Vz	0.035	0.035	0.035
		Mt	0.000	0.000	0.000
		Му	0.021	0.010	0.000
		Mz	0.000	0.000	0.000

	Esfuerzos	en barra	s, por hij	pótesis	
Barra	Linátosis	Esfuerzo	Posicio	ones en la	barra
Dalla	Hipótesis	Estuerzo	0.000 m	0.300 m	0.600 m
N11/N13	Peso propio	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	-0.002	-0.001	-0.001
		Mt	0.000	0.000	0.000
		Му	0.000	0.001	0.001
		Mz	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	-0.007	-0.007	-0.007
		Mt	0.000	0.000	0.000
		Му	0.000	0.002	0.004
		Mz	0.000	0.000	0.000
	Q 1	N	-0.002	-0.002	-0.002
		Vy	-0.001	-0.001	-0.001
		Vz	-0.035	-0.035	-0.035
		Mt	0.000	0.000	0.000
		Му	0.000	0.010	0.021
		Mz	0.000	0.000	0.000

	Esfuerzos	en barra	s, por hij	oótesis	
Barra	Hinátosis	Esfuerzo	Posicio	ones en la	barra
Dalla	Hipótesis	LSIUEIZO	0.000 m	0.300 m	0.600 m
N13/N12	Peso propio	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	0.001	0.001	0.002
		Mt	0.000	0.000	0.000
		Му	0.001	0.001	0.000
		Mz	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000
		Vy	0.000	0.000	0.000
		Vz	0.007	0.007	0.007
		Mt	0.000	0.000	0.000
		Му	0.004	0.002	0.000
		Mz	0.000	0.000	0.000
	Q 1	N	-0.002	-0.002	-0.002
		Vy	0.001	0.001	0.001
		Vz	0.035	0.035	0.035
		Mt	0.000	0.000	0.000
		Му	0.021	0.010	0.000
		Mz	0.000	0.000	0.000

		E	sfuerzos	en barra	as, por hi	pótesis			
Daws	Hinátosia	Cof			Posicio	ones en la	barra		
Barra	Hipótesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N15/N6	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.001	0.002	0.002	0.002	0.001	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.035	-0.023	-0.012	0.000	0.012	0.023	0.035
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.005	0.009	0.010	0.009	0.005	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		E	sfuerzos	en barra	s, por hij	pótesis			
Darra	Hinátosis	Ecfuerza			Posicio	ones en la	barra		
Barra	Hipótesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N14/N15	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
	CMI	Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.001	0.002	0.002	0.002	0.001	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.035	-0.023	-0.012	0.000	0.012	0.023	0.035
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.005	0.009	0.010	0.009	0.005	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000

puente 4.60 m Fecha: 03/07/25

		E	sfuerzos	en barra	s, por hij	pótesis			
Daws	Hinátosia	Cofor			Posicio	ones en la	barra		
Barra	Hipótesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N13/N14	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.001	0.002	0.002	0.002	0.001	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.035	-0.023	-0.012	0.000	0.012	0.023	0.035
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.005	0.009	0.010	0.009	0.005	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		E	sfuerzos	en barra	as, por hi	pótesis			
Darra	Linátosis	Ecfuerzo			Posicio	ones en la	barra		
Barra	Hipótesis	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N5/N13	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.001	0.002	0.002	0.002	0.001	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.035	-0.023	-0.012	0.000	0.012	0.023	0.035
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.005	0.009	0.010	0.009	0.005	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000

2.3.2.1.2. Combinaciones

		Esf	uerzos en	barras, p	or combi	nación				
Вомио		Combinación	Esfuerzo			Posici	ones en la	barra		
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N1/N11	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.031	-0.029	-0.028	-0.026	-0.024	-0.023	-0.021
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.006	0.011	0.016	0.021	0.026	0.030
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.038	-0.036	-0.034	-0.032	-0.030	-0.028	-0.026
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.007	0.014	0.020	0.026	0.032	0.037
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.045	-0.043	-0.040	-0.038	-0.036	-0.033	-0.031
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.008	0.016	0.024	0.031	0.038	0.044
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.052	-0.050	-0.047	-0.044	-0.041	-0.038	-0.035
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.010	0.019	0.028	0.036	0.043	0.050
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002
			Vz	-0.214	-0.204	-0.193	-0.183	-0.172	-0.162	-0.152
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.040	0.078	0.114	0.148	0.180	0.210
			Mz	0.002	0.001	0.001	0.000	0.000	0.000	-0.001
		1.35·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002
			Vz	-0.221	-0.210	-0.200	-0.189	-0.178	-0.167	-0.156
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.041	0.081	0.118	0.153	0.186	0.217
			Mz	0.002	0.001	0.001	0.000	0.000	0.000	-0.001
		0.8·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002
			Vz	-0.228	-0.217	-0.206	-0.195	-0.184	-0.173	-0.162
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.043	0.083	0.122	0.158	0.192	0.224
			Mz	0.002	0.001	0.001	0.000	0.000	0.000	-0.001
		1.35·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002
			Vz	-0.235	-0.224	-0.212	-0.201	-0.189	-0.178	-0.166
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.044	0.086	0.125	0.163	0.198	0.231
			Mz	0.002	0.001	0.001	0.000	0.000	0.000	-0.001

	Esfuerzos en barras, por combinación											
Barra		Combinación	Esfuerzo			Posici	ones en la	barra				
Dalla	Tipo	Descripción	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
N11/N7	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	-0.014	-0.012	-0.010	-0.009	-0.007	-0.005	-0.004		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.030	0.032	0.035	0.036	0.038	0.039	0.040		
				0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

		Esf	uerzos en	barras, p	or combi	nación				
_		Combinación				Posici	ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.017	-0.015	-0.013	-0.011	-0.009	-0.006	-0.004
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.037	0.040	0.042	0.045	0.047	0.048	0.049
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.020	-0.017	-0.015	-0.013	-0.010	-0.008	-0.006
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.044	0.047	0.050	0.053	0.055	0.057	0.058
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.023	-0.020	-0.017	-0.015	-0.012	-0.009	-0.006
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.050	0.055	0.058	0.061	0.064	0.066	0.067
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	-0.092	-0.082	-0.071	-0.061	-0.051	-0.040	-0.030
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.210	0.227	0.242	0.254	0.265	0.274	0.280
			Mz	-0.001	-0.001	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	-0.095	-0.085	-0.074	-0.063	-0.052	-0.041	-0.030
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.217	0.234	0.250	0.263	0.274	0.283	0.289
			Mz	-0.001	-0.001	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	-0.098	-0.087	-0.076	-0.065	-0.054	-0.043	-0.032
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.224	0.242	0.257	0.271	0.282	0.291	0.299
			Mz	-0.001	-0.001	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	-0.101	-0.090	-0.078	-0.067	-0.055	-0.044	-0.032
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.231	0.249	0.265	0.279	0.291	0.300	0.308
			Mz	-0.001	-0.001	0.000	0.000	0.000	0.000	0.000

	Esfuerzos en barras, por combinación									
Barra		Combinación	Esfuerzo			Posici	ones en la	barra		
Dalla	Tipo	Descripción	LSiueizo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N7/N9	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	0.004	0.005	0.007	0.009	0.010	0.012	0.014
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.040	0.039	0.038	0.036	0.035	0.032	0.030
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	0.004	0.006	0.009	0.011	0.013	0.015	0.017
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.049	0.048	0.047	0.045	0.042	0.040	0.037
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Es	fuerzos e	n barras,	por comb	inación				
_		Combinación			•	Posici	ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	0.006	0.008	0.010	0.013	0.015	0.017	0.020
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.058	0.057	0.055	0.053	0.050	0.047	0.044
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	0.006	0.009	0.012	0.015	0.017	0.020	0.023
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.067	0.066	0.064	0.061	0.058	0.055	0.050
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vz	0.030	0.040	0.051	0.061	0.071	0.082	0.092
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.280	0.274	0.265	0.254	0.242	0.227	0.210
			Mz	0.000	0.000	0.000	0.000	0.000	-0.001	-0.001
		1.35·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vz	0.030	0.041	0.052	0.063	0.074	0.085	0.095
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.289	0.283	0.274	0.263	0.250	0.234	0.217
			Mz	0.000	0.000	0.000	0.000	0.000	-0.001	-0.001
		0.8·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vz	0.032	0.043	0.054	0.065	0.076	0.087	0.098
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.299	0.291	0.282	0.271	0.257	0.242	0.224
		1.25 00.1.25 014.1.5 5.1.	Mz	0.000	0.000	0.000	0.000	0.000	-0.001	-0.001
		1.35·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vz	0.032 0.000	0.044 0.000	0.055 0.000	0.067 0.000	0.078 0.000	0.090	0.101
			Mt		0.000	0.000	0.000	0.000	0.000 0.249	0.000
			My Ma	0.308						0.231
			Mz	0.000	0.000	0.000	0.000	0.000	-0.001	-0.001

	Esfuerzos en barras, por combinación									
Вакка		Combinación	Ecfuerzo			Posici	ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N9/N2	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	0.021	0.023	0.024	0.026	0.028	0.029	0.031
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.030	0.026	0.021	0.016	0.011	0.006	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	0.026	0.028	0.030	0.032	0.034	0.036	0.038
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.037	0.032	0.026	0.020	0.014	0.007	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	0.031	0.033	0.036	0.038	0.040	0.043	0.045
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.044	0.038	0.031	0.024	0.016	0.008	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Es	fuerzos ei	n barras,	por comb	inación				
Da		Combinación	F-6			Posici	ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	0.035	0.038	0.041	0.044	0.047	0.050	0.052
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.050	0.043	0.036	0.028	0.019	0.010	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vz	0.152	0.162	0.172	0.183	0.193	0.204	0.214
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.210	0.180	0.148	0.114	0.078	0.040	0.000
			Mz	-0.001	0.000	0.000	0.000	0.001	0.001	0.002
		1.35·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vz	0.156	0.167	0.178	0.189	0.200	0.210	0.221
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.217	0.186	0.153	0.118	0.081	0.041	0.000
			Mz	-0.001	0.000	0.000	0.000	0.001	0.001	0.002
		0.8·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vz	0.162	0.173	0.184	0.195	0.206	0.217	0.228
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.224	0.192	0.158	0.122	0.083	0.043	0.000
			Mz	-0.001	0.000	0.000	0.000	0.001	0.001	0.002
		1.35·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vz	0.166	0.178	0.189	0.201	0.212	0.224	0.235
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.231	0.198	0.163	0.125	0.086	0.044	0.000
			Mz	-0.001	0.000	0.000	0.000	0.001	0.001	0.002

		Esfuerzos en barras,	por comb	inación		
Barra		Combinación	Ecfuerze	Posicio	ones en la	barra
Dalla	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N2/N6	Madera	0.8·PP+0.8·CM1	N	-0.019	-0.019	-0.019
			Vy	0.001	0.001	0.001
			Vz	-0.004	-0.004	-0.003
			Mt	0.000	0.000	0.000
			Му	-0.001	0.000	0.001
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.022	-0.022	-0.022
			Vy	0.001	0.001	0.001
			Vz	-0.005	-0.004	-0.004
			Mt	0.000	0.000	0.000
			Му	-0.001	0.000	0.002
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.029	-0.029	-0.029
			Vy	0.001	0.001	0.001
			Vz	-0.006	-0.006	-0.005
			Mt	0.000	0.000	0.000
			Му	-0.001	0.001	0.002
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.032	-0.032	-0.032

Esfuerzos en barras, por combinación								
Barra		Combinación	Ecfuerzo	Posiciones en la barra				
Бана	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m		
			Vy	0.001	0.001	0.001		
			Vz	-0.007	-0.006	-0.006		
			Mt	0.000	0.000	0.000		
			Му	-0.001	0.001	0.002		
			Mz	0.000	0.000	0.000		
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.148	-0.148	-0.148		
			Vy	0.006	0.006	0.006		
			Vz	-0.030	-0.030	-0.029		
			Mt	0.000	0.000	0.000		
			Му	-0.006	0.003	0.012		
			Mz	0.002	0.000	-0.002		
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.151	-0.151	-0.151		
			Vy	0.006	0.006	0.006		
			Vz	-0.031	-0.030	-0.030		
			Mt	0.000	0.000	0.000		
			Му	-0.006	0.003	0.012		
			Mz	0.002	0.000	-0.002		
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.158	-0.158	-0.158		
			Vy	0.006	0.006	0.006		
			Vz	-0.032	-0.032	-0.031		
			Mt	0.000	0.000	0.000		
			Му	-0.006	0.003	0.013		
			Mz	0.002	0.000	-0.002		
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.161	-0.161	-0.161		
			Vy	0.006	0.006	0.006		
			Vz	-0.033	-0.032	-0.032		
			Mt	0.000	0.000	0.000		
			Му	-0.006	0.003	0.013		
			Mz	0.002	0.000	-0.002		

Esfuerzos en barras, por combinación									
Barra		Combinación	Esfuerzo	Posiciones en la barra					
	Tipo	Descripción	LSIUEIZO	0.000 m	0.300 m	0.600 m			
N6/N3	Madera 0.8·PP+0.8·CM1		N	-0.019	-0.019	-0.019			
			Vy	-0.001	-0.001	-0.001			
			Vz	0.003	0.004	0.004			
			Mt	0.000	0.000	0.000			
			Му	0.001	0.000	-0.001			
			Mz	0.000	0.000	0.000			
		1.35·PP+0.8·CM1	N	-0.022	-0.022	-0.022			
			Vy	-0.001	-0.001	-0.001			
			Vz	0.004	0.004	0.005			
			Mt	0.000	0.000	0.000			
			Му	0.002	0.000	-0.001			
			Mz	0.000	0.000	0.000			

		Esfuerzos en barras, ¡	por combinación				
Darra		Combinación	Esfuerzo	Posiciones en la barra			
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m	
		0.8·PP+1.35·CM1	N	-0.029	-0.029	-0.029	
			Vy	-0.001	-0.001	-0.001	
			Vz	0.005	0.006	0.006	
			Mt	0.000	0.000	0.000	
			Му	0.002	0.001	-0.001	
			Mz	0.000	0.000	0.000	
		1.35·PP+1.35·CM1	N	-0.032	-0.032	-0.032	
			Vy	-0.001	-0.001	-0.001	
			Vz	0.006	0.006	0.007	
			Mt	0.000	0.000	0.000	
			Му	0.002	0.001	-0.001	
			Mz	0.000	0.000	0.000	
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.148	-0.148	-0.148	
			Vy	-0.006	-0.006	-0.006	
			Vz	0.029	0.030	0.030	
			Mt	0.000	0.000	0.000	
			Му	0.012	0.003	-0.006	
			Mz	-0.002	0.000	0.002	
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.151	-0.151	-0.151	
			Vy	-0.006	-0.006	-0.006	
			Vz	0.030	0.030	0.031	
			Mt	0.000	0.000	0.000	
			Му	0.012	0.003	-0.006	
			Mz	-0.002	0.000	0.002	
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.158	-0.158	-0.158	
			Vy	-0.006	-0.006	-0.006	
			Vz	0.031	0.032	0.032	
			Mt	0.000	0.000	0.000	
			Му	0.013	0.003	-0.006	
			Mz	-0.002	0.000	0.002	
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.161	-0.161	-0.161	
			Vy	-0.006	-0.006	-0.006	
			Vz	0.032	0.032	0.033	
			Mt	0.000	0.000	0.000	
			Му	0.013	0.003	-0.006	
			Mz	-0.002	0.000	0.002	

Esfuerzos en barras, por combinación										
Barra		Combinación	Esfuerzo	Posiciones en la barra						
Tipo	Tipo	Descripción	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N4/N12	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.031	-0.029	-0.028	-0.026	-0.024	-0.023	-0.021
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.006	0.011	0.016	0.021	0.026	0.030
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Esfuerzos en barras, por combinación											
D =		Combinación	Faf a.m.	Posiciones en la barra							
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m	
			Vz	-0.038	-0.036	-0.034	-0.032	-0.030	-0.028	-0.026	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.000	0.007	0.014	0.020	0.026	0.032	0.037	
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vz	-0.045	-0.043	-0.040	-0.038	-0.036	-0.033	-0.031	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.000	0.008	0.016	0.024	0.031	0.038	0.044	
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vz	-0.052	-0.050	-0.047	-0.044	-0.041	-0.038	-0.035	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.000	0.010	0.019	0.028	0.036	0.043	0.050	
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.8·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	
			Vz	-0.214	-0.204	-0.193	-0.183	-0.172	-0.162	-0.152	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.000	0.040	0.078	0.114	0.148	0.180	0.210	
			Mz	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.001	
		1.35·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	
			Vz	-0.221	-0.210	-0.200	-0.189	-0.178	-0.167	-0.156	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.000	0.041	0.081	0.118	0.153	0.186	0.217	
			Mz	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.001	
		0.8·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	
			Vz	-0.228	-0.217	-0.206	-0.195	-0.184	-0.173	-0.162	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.000	0.043	0.083	0.122	0.158	0.192	0.224	
			Mz	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.001	
		1.35·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	
			Vz	-0.235	-0.224	-0.212	-0.201	-0.189	-0.178	-0.166	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.000	0.044	0.086	0.125	0.163	0.198	0.231	
			Mz	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.001	

	Esfuerzos en barras, por combinación											
Barra		Combinación	Esfuerzo			Posici	ones en la	barra				
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
N12/N8	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	-0.014	-0.012	-0.010	-0.009	-0.007	-0.005	-0.004		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.030	0.032	0.035	0.036	0.038	0.039	0.040		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	-0.017	-0.015	-0.013	-0.011	-0.009	-0.006	-0.004		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.037	0.040	0.042	0.045	0.047	0.048	0.049		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	-0.020	-0.017	-0.015	-0.013	-0.010	-0.008	-0.006		

Esfuerzos en barras, por combinación											
D		Combinación	F-6			Posici	ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.044	0.047	0.050	0.053	0.055	0.057	0.058	
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vz	-0.023	-0.020	-0.017	-0.015	-0.012	-0.009	-0.006	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.050	0.055	0.058	0.061	0.064	0.066	0.067	
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		0.8·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
			Vz	-0.092	-0.082	-0.071	-0.061	-0.051	-0.040	-0.030	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.210	0.227	0.242	0.254	0.265	0.274	0.280	
			Mz	0.001	0.001	0.000	0.000	0.000	0.000	0.000	
		1.35·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
			Vz	-0.095	-0.085	-0.074	-0.063	-0.052	-0.041	-0.030	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.217	0.234	0.250	0.263	0.274	0.283	0.289	
			Mz	0.001	0.001	0.000	0.000	0.000	0.000	0.000	
		0.8·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
			Vz	-0.098	-0.087	-0.076	-0.065	-0.054	-0.043	-0.032	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.224	0.242	0.257	0.271	0.282	0.291	0.299	
			Mz	0.001	0.001	0.000	0.000	0.000	0.000	0.000	
		1.35·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
			Vz	-0.101	-0.090	-0.078	-0.067	-0.055	-0.044	-0.032	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.231	0.249	0.265	0.279	0.291	0.300	0.308	
			Mz	0.001	0.001	0.000	0.000	0.000	0.000	0.000	

	Esfuerzos en barras, por combinación											
Вомис		Combinación	Eofuer-			Posici	ones en la	barra				
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
N8/N10	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	0.004	0.005	0.007	0.009	0.010	0.012	0.014		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.040	0.039	0.038	0.036	0.035	0.032	0.030		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	0.004	0.006	0.009	0.011	0.013	0.015	0.017		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.049	0.048	0.047	0.045	0.042	0.040	0.037		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	0.006	0.008	0.010	0.013	0.015	0.017	0.020		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.058	0.057	0.055	0.053	0.050	0.047	0.044		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	0.006	0.009	0.012	0.015	0.017	0.020	0.023		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

		Esf	uerzos en	barras, p	or combi	nación				
Da		Combinación	F-6			Posici	ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
			Му	0.067	0.066	0.064	0.061	0.058	0.055	0.050
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	0.030	0.040	0.051	0.061	0.071	0.082	0.092
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.280	0.274	0.265	0.254	0.242	0.227	0.210
			Mz	0.000	0.000	0.000	0.000	0.000	0.001	0.001
		1.35·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	0.030	0.041	0.052	0.063	0.074	0.085	0.095
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.289	0.283	0.274	0.263	0.250	0.234	0.217
			Mz	0.000	0.000	0.000	0.000	0.000	0.001	0.001
		0.8·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	0.032	0.043	0.054	0.065	0.076	0.087	0.098
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.299	0.291	0.282	0.271	0.257	0.242	0.224
			Mz	0.000	0.000	0.000	0.000	0.000	0.001	0.001
		1.35·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	0.032	0.044	0.055	0.067	0.078	0.090	0.101
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.308	0.300	0.291	0.279	0.265	0.249	0.231
			Mz	0.000	0.000	0.000	0.000	0.000	0.001	0.001

	Esfuerzos en barras, por combinación											
Down		Combinación	Estuarza			Posici	ones en la	barra				
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
N10/N3	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	0.021	0.023	0.024	0.026	0.028	0.029	0.031		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.030	0.026	0.021	0.016	0.011	0.006	0.000		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	0.026	0.028	0.030	0.032	0.034	0.036	0.038		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.037	0.032	0.026	0.020	0.014	0.007	0.000		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	0.031	0.033	0.036	0.038	0.040	0.043	0.045		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.044	0.038	0.031	0.024	0.016	0.008	0.000		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vz	0.035	0.038	0.041	0.044	0.047	0.050	0.052		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.050	0.043	0.036	0.028	0.019	0.010	0.000		
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		0.8·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002		
			Vz	0.152	0.162	0.172	0.183	0.193	0.204	0.214		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.210	0.180	0.148	0.114	0.078	0.040	0.000		

	Esfuerzos en barras, por combinación											
Daws		Combinación	Estuarza			Posici	ones en la	barra				
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
			Mz	0.001	0.000	0.000	0.000	-0.001	-0.001	-0.002		
		1.35·PP+0.8·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002		
			Vz	0.156	0.167	0.178	0.189	0.200	0.210	0.221		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			My	0.217	0.186	0.153	0.118	0.081	0.041	0.000		
			Mz	0.001	0.000	0.000	0.000	-0.001	-0.001	-0.002		
		0.8·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002		
			Vz	0.162	0.173	0.184	0.195	0.206	0.217	0.228		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			My	0.224	0.192	0.158	0.122	0.083	0.043	0.000		
			Mz	0.001	0.000	0.000	0.000	-0.001	-0.001	-0.002		
		1.35·PP+1.35·CM1+1.5·Q1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002		
			Vz	0.166	0.178	0.189	0.201	0.212	0.224	0.235		
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
			Му	0.231	0.198	0.163	0.125	0.086	0.044	0.000		
			Mz	0.001	0.000	0.000	0.000	-0.001	-0.001	-0.002		

		Esfuerzos en barras,	por comb	inación		
Воммо		Combinación	Fafa.	Posicio	ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N1/N5	Madera	0.8·PP+0.8·CM1	N	-0.019	-0.019	-0.019
			Vy	-0.001	-0.001	-0.001
			Vz	-0.004	-0.004	-0.003
			Mt	0.000	0.000	0.000
			Му	-0.001	0.000	0.001
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.022	-0.022	-0.022
			Vy	-0.001	-0.001	-0.001
			Vz	-0.005	-0.004	-0.004
			Mt	0.000	0.000	0.000
			Му	-0.001	0.000	0.002
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.029	-0.029	-0.029
			Vy	-0.001	-0.001	-0.001
			Vz	-0.006	-0.006	-0.005
			Mt	0.000	0.000	0.000
			Му	-0.001	0.001	0.002
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.032	-0.032	-0.032
			Vy	-0.001	-0.001	-0.001
			Vz	-0.007	-0.006	-0.006
			Mt	0.000	0.000	0.000
			Му	-0.001	0.001	0.002
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.148	-0.148	-0.148
			Vy	-0.006	-0.006	-0.006
			Vz	-0.030	-0.030	-0.029

	Esfuerzos en barras, por combinación							
Darra		Combinación	Ecfuerzo	Posicio	ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m		
			Mt	0.000	0.000	0.000		
			Му	-0.006	0.003	0.012		
			Mz	-0.002	0.000	0.002		
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.151	-0.151	-0.151		
			Vy	-0.006	-0.006	-0.006		
			Vz	-0.031	-0.030	-0.030		
			Mt	0.000	0.000	0.000		
			Му	-0.006	0.003	0.012		
			Mz	-0.002	0.000	0.002		
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.158	-0.158	-0.158		
			Vy	-0.006	-0.006	-0.006		
			Vz	-0.032	-0.032	-0.031		
			Mt	0.000	0.000	0.000		
			Му	-0.006	0.003	0.013		
			Mz	-0.002	0.000	0.002		
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.161	-0.161	-0.161		
			Vy	-0.006	-0.006	-0.006		
			Vz	-0.033	-0.032	-0.032		
			Mt	0.000	0.000	0.000		
			Му	-0.006	0.003	0.013		
			Mz	-0.002	0.000	0.002		

	Esfuerzos en barras, por combinación									
Barra		Combinación	Esfuerzo	Posicio	ones en la	barra				
Dalla	Tipo	Descripción	LSIUEIZO	0.000 m	0.300 m	0.600 m				
N5/N4	Madera	0.8·PP+0.8·CM1	N	-0.019	-0.019	-0.019				
			Vy	0.001	0.001	0.001				
			Vz	0.003	0.004	0.004				
			Mt	0.000	0.000	0.000				
			Му	0.001	0.000	-0.001				
			Mz	0.000	0.000	0.000				
		1.35·PP+0.8·CM1	N	-0.022	-0.022	-0.022				
			Vy	0.001	0.001	0.001				
			Vz	0.004	0.004	0.005				
			Mt	0.000	0.000	0.000				
			Му	0.002	0.000	-0.001				
			Mz	0.000	0.000	0.000				
		0.8·PP+1.35·CM1	N	-0.029	-0.029	-0.029				
			Vy	0.001	0.001	0.001				
			Vz	0.005	0.006	0.006				
			Mt	0.000	0.000	0.000				
			Му	0.002	0.001	-0.001				
			Mz	0.000	0.000	0.000				
		1.35·PP+1.35·CM1	N	-0.032	-0.032	-0.032				
			Vy	0.001	0.001	0.001				

		Esfuerzos en barras, ¡	por comb	inación		
Darra		Combinación	Esfuerzo	Posicio	ones en la	barra
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
			Vz	0.006	0.006	0.007
			Mt	0.000	0.000	0.000
			Му	0.002	0.001	-0.001
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.148	-0.148	-0.148
			Vy	0.006	0.006	0.006
			Vz	0.029	0.030	0.030
			Mt	0.000	0.000	0.000
			Му	0.012	0.003	-0.006
			Mz	0.002	0.000	-0.002
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.151	-0.151	-0.151
			Vy	0.006	0.006	0.006
			Vz	0.030	0.030	0.031
			Mt	0.000	0.000	0.000
			Му	0.012	0.003	-0.006
			Mz	0.002	0.000	-0.002
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.158	-0.158	-0.158
			Vy	0.006	0.006	0.006
			Vz	0.031	0.032	0.032
			Mt	0.000	0.000	0.000
			Му	0.013	0.003	-0.006
			Mz	0.002	0.000	-0.002
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.161	-0.161	-0.161
			Vy	0.006	0.006	0.006
			Vz	0.032	0.032	0.033
			Mt	0.000	0.000	0.000
			Му	0.013	0.003	-0.006
			Mz	0.002	0.000	-0.002

		Esfuerzos en barras, p	or combi	inación		
Barra		Combinación	Esfuerzo	Posicio	ones en la	barra
Dalla	Tipo	Descripción	LSIUEIZO	0.000 m	0.300 m	0.600 m
N7/N14	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	-0.007	-0.007	-0.007
			Mt	0.000	0.000	0.000
			Му	0.000	0.002	0.004
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	-0.008	-0.008	-0.007
			Mt	0.000	0.000	0.000
			Му	0.000	0.002	0.005
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000

		Esfuerzos en barras, p	or combi	inación		
Barra		Combinación	Esfuerzo	Posicio	ones en la	barra
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
			Vy	0.000	0.000	0.000
			Vz	-0.011	-0.011	-0.011
			Mt	0.000	0.000	0.000
			Му	0.000	0.003	0.007
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	-0.012	-0.012	-0.011
			Mt	0.000	0.000	0.000
			Му	0.000	0.004	0.007
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.002	0.002	0.002
			Vy	0.000	0.000	0.000
			Vz	-0.060	-0.059	-0.059
			Mt	0.000	0.000	0.000
			Му	0.000	0.018	0.036
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	0.002	0.002	0.002
			Vy	0.000	0.000	0.000
			Vz	-0.061	-0.060	-0.059
			Mt	0.000	0.000	0.000
			Му	0.000	0.018	0.036
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	0.003	0.003	0.003
			Vy	0.000	0.000	0.000
			Vz	-0.064	-0.063	-0.063
			Mt	0.000	0.000	0.000
			Му	0.000	0.019	0.038
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	0.003	0.003	0.003
			Vy	0.000	0.000	0.000
			Vz	-0.065	-0.064	-0.063
			Mt	0.000	0.000	0.000
			Му	0.000	0.019	0.039
			Mz	0.000	0.000	0.000

	Esfuerzos en barras, por combinación									
Barra	Combinación		Esfuerzo	Posicio	ones en la	barra				
Barra	Tipo	Descripción	LSiueizo	0.000 m	0.300 m	0.600 m				
N14/N8	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000				
			Vy	0.000	0.000	0.000				
			Vz	0.007	0.007	0.007				
			Mt	0.000	0.000	0.000				
			Му	0.004	0.002	0.000				
			Mz	0.000	0.000	0.000				

		Esfuerzos en barras, p	or comb	inación		
_		Combinación			ones en la	barra
Barra	Tipo	Descripción	Esfuerzo		0.300 m	1
	•	1.35·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	0.007	0.008	0.008
			Mt	0.000	0.000	0.000
			My	0.005	0.002	0.000
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	0.011	0.011	0.011
			Mt	0.000	0.000	0.000
			Му	0.007	0.003	0.000
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	0.011	0.012	0.012
			Mt	0.000	0.000	0.000
			Му	0.007	0.004	0.000
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.002	0.002	0.002
			Vy	0.000	0.000	0.000
			Vz	0.059	0.059	0.060
			Mt	0.000	0.000	0.000
			Му	0.036	0.018	0.000
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	0.002	0.002	0.002
			Vy	0.000	0.000	0.000
			Vz	0.059	0.060	0.061
			Mt	0.000	0.000	0.000
			Му	0.036	0.018	0.000
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	0.003	0.003	0.003
			Vy	0.000	0.000	0.000
			Vz	0.063	0.063	0.064
			Mt	0.000	0.000	0.000
			Му	0.038	0.019	0.000
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	0.003	0.003	0.003
			Vy	0.000	0.000	0.000
			Vz	0.063	0.064	0.065
			Mt	0.000	0.000	0.000
			Му	0.039	0.019	0.000
			Mz	0.000	0.000	0.000

		Esfuerzos en barras, p	or comb	inación		
D		Combinación		I	ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N9/N15	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	-0.007	-0.007	-0.007
			Mt	0.000	0.000	0.000
			Му	0.000	0.002	0.004
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	-0.008	-0.008	-0.007
			Mt	0.000	0.000	0.000
			My	0.000	0.002	0.005
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.001	-0.001	-0.001
		0.0 1. 12.00 0.12	Vy	0.000	0.000	0.000
			Vz	-0.011	-0.011	-0.011
			Mt	0.000	0.000	0.000
			My	0.000	0.003	0.007
			Mz	0.000	0.000	0.000
	1.35·PP+1.35·CM1	N	-0.001	-0.001	-0.001	
		1.55-17 +1.55-611	Vy	0.000	0.000	0.000
			V y Vz	-0.012	-0.012	-0.011
			Mt	0.000	0.000	0.000
			My	0.000	0.000	0.007
			Mz	0.000	0.004	0.007
		0.0 DD 10.0 CM1 11 F O1	N N	-0.004	-0.004	-0.004
		0.8·PP+0.8·CM1+1.5·Q1		0.004		
			Vy		0.001	0.001
			Vz	-0.060	-0.059	-0.059
			Mt	0.000	0.000	0.000
			My	0.000	0.018	0.035
		1.25 00:0.0 0041:1.5 01	Mz	0.000	0.000	-0.001
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	0.001	0.001	0.001
			Vz	-0.061	-0.060	-0.059
			Mt	0.000	0.000	0.000
			Му	0.000	0.018	0.036
			Mz	0.000	0.000	-0.001
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	0.001	0.001	0.001
			Vz	-0.064	-0.063	-0.063
			Mt	0.000	0.000	0.000
			Му	0.000	0.019	0.038
			Mz	0.000	0.000	-0.001
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	0.001	0.001	0.001
			Vz	-0.065	-0.064	-0.063
			Mt	0.000	0.000	0.000

	Esfuerzos en barras, por combinación									
Barra	Combinación			Posiciones en la barra						
	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m				
			Му	0.000	0.019	0.038				
			Mz	0.000	0.000	-0.001				

		Esfuerzos en barras, p	or combi	nación		
D		Combinación	F - 6	Posicio	ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N15/N10	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	0.007	0.007	0.007
			Mt	0.000	0.000	0.000
			Му	0.004	0.002	0.000
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	0.007	0.008	0.008
			Mt	0.000	0.000	0.000
			Му	0.005	0.002	0.000
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000
			Vz	0.011	0.011	0.011
			Mt	0.000	0.000	0.000
			Му	0.007	0.003	0.000
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000
			Vz	0.011	0.012	0.012
			Mt	0.000	0.000	0.000
			Му	0.007	0.004	0.000
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	-0.001	-0.001	-0.001
			Vz	0.059	0.059	0.060
			Mt	0.000	0.000	0.000
			Му	0.035	0.018	0.000
			Mz	-0.001	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	-0.001	-0.001	-0.001
			Vz	0.059	0.060	0.061
			Mt	0.000	0.000	0.000
			Му	0.036	0.018	0.000
			Mz	-0.001	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	-0.001	-0.001	-0.001
			Vz	0.063	0.063	0.064

		Esfuerzos en barras, p	or combi	nación		
Barra		Combinación	Ecfuerzo	Posicio	ones en la	barra
Darra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
			Mt	0.000	0.000	0.000
			Му	0.038	0.019	0.000
			Mz	-0.001	0.000	0.000
	1.35·PP+1.35·CM1+1.5·Q		N	-0.004	-0.004	-0.004
			Vy	-0.001	-0.001	-0.001
			Vz	0.063	0.064	0.065
			Mt	0.000	0.000	0.000
			Му	0.038	0.019	0.000
			Mz	-0.001	0.000	0.000

		Esfuerzos en barras, p	or combi	nación		
Вомио		Combinación	Cofor	Posicio	ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N11/N13	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	-0.007	-0.007	-0.007
			Mt	0.000	0.000	0.000
			Му	0.000	0.002	0.004
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	-0.008	-0.008	-0.007
			Mt	0.000	0.000	0.000
			Му	0.000	0.002	0.005
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000
			Vz	-0.011	-0.011	-0.011
			Mt	0.000	0.000	0.000
			Му	0.000	0.003	0.007
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000
			Vz	-0.012	-0.012	-0.011
			Mt	0.000	0.000	0.000
			Му	0.000	0.004	0.007
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	-0.001	-0.001	-0.001
			Vz	-0.060	-0.059	-0.059
			Mt	0.000	0.000	0.000
			Му	0.000	0.018	0.035
			Mz	0.000	0.000	0.001
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	-0.001	-0.001	-0.001

		Esfuerzos en barras, p	or combi	nación		
Parra		Combinación	Ecfuerzo	Posicio	ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
			Vz	-0.061	-0.060	-0.059
			Mt	0.000	0.000	0.000
			Му	0.000	0.018	0.036
			Mz	0.000	0.000	0.001
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	-0.001	-0.001	-0.001
			Vz	-0.064	-0.063	-0.063
			Mt	0.000	0.000	0.000
			Му	0.000	0.019	0.038
			Mz	0.000	0.000	0.001
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	-0.001	-0.001	-0.001
			Vz	-0.065	-0.064	-0.063
			Mt	0.000	0.000	0.000
			Му	0.000	0.019	0.038
			Mz	0.000	0.000	0.001

		Esfuerzos en barras, p	or combi	nación		
		Combinación			ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N13/N12	Madera	•	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	0.007	0.007	0.007
			Mt	0.000	0.000	0.000
			Му	0.004	0.002	0.000
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000
			Vy	0.000	0.000	0.000
			Vz	0.007	0.008	0.008
			Mt	0.000	0.000	0.000
			Му	0.005	0.002	0.000
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000
			Vz	0.011	0.011	0.011
			Mt	0.000	0.000	0.000
			Му	0.007	0.003	0.000
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000
			Vz	0.011	0.012	0.012
			Mt	0.000	0.000	0.000
			Му	0.007	0.004	0.000
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.004	-0.004	-0.004

		Esfuerzos en barras, p	or combi	nación		
Barra		Combinación	Esfuerzo	Posicio	ones en la	barra
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
			Vy	0.001	0.001	0.001
			Vz	0.059	0.059	0.060
			Mt	0.000	0.000	0.000
			Му	0.035	0.018	0.000
			Mz	0.001	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	0.001	0.001	0.001
			Vz	0.059	0.060	0.061
			Mt	0.000	0.000	0.000
			Му	0.036	0.018	0.000
			Mz	0.001	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	0.001	0.001	0.001
			Vz	0.063	0.063	0.064
			Mt	0.000	0.000	0.000
			Му	0.038	0.019	0.000
			Mz	0.001	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.004	-0.004	-0.004
			Vy	0.001	0.001	0.001
			Vz	0.063	0.064	0.065
			Mt	0.000	0.000	0.000
			Му	0.038	0.019	0.000
			Mz	0.001	0.000	0.000

		Esf	uerzos en	barras, p	or combi	nación				
Barra		Combinación	Esfuerzo			Posici	ones en la	barra		
Darra	Tipo	Descripción	ESiderzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N15/N6	Madera	0.8·PP+0.8·CM1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.004	-0.002	0.000	0.002	0.004	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.002	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.002	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.011	-0.007	-0.004	0.000	0.004	0.007	0.011
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.002	0.003	0.003	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.011	-0.007	-0.004	0.000	0.004	0.007	0.011
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.003	0.003	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Esf	uerzos en	n barras, por combinación						
Barra		Combinación	Esfuerzo			Posici	ones en la	barra		
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.059	-0.039	-0.020	0.000	0.020	0.039	0.059
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.009	0.015	0.016	0.015	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.059	-0.040	-0.020	0.000	0.020	0.040	0.059
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.009	0.015	0.017	0.015	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.063	-0.042	-0.021	0.000	0.021	0.042	0.063
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.010	0.016	0.018	0.016	0.010	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.063	-0.042	-0.021	0.000	0.021	0.042	0.063
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.010	0.016	0.018	0.016	0.010	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Esfuerzos en barras, por combinación										
Dawe		Combinación	F-6			Posici	ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N14/N15	Madera	0.8·PP+0.8·CM1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.004	-0.002	0.000	0.002	0.004	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.001	0.002	0.002	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.001	0.002	0.002	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.011	-0.007	-0.004	0.000	0.004	0.007	0.011
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.003	0.003	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.011	-0.007	-0.004	0.000	0.004	0.007	0.011
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.003	0.003	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.059	-0.039	-0.020	0.000	0.020	0.039	0.059
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.009	0.014	0.016	0.014	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Esf	uerzos en	barras, p	or combir	nación				
Barra		Combinación	Esfuerzo			Posici	ones en la	barra		
Dalla	Tipo	Descripción	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
			Vz	-0.059	-0.040	-0.020	0.000	0.020	0.040	0.059
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.009	0.015	0.017	0.015	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.063	-0.042	-0.021	0.000	0.021	0.042	0.063
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.009	0.015	0.017	0.015	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.063	-0.042	-0.021	0.000	0.021	0.042	0.063
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.010	0.016	0.018	0.016	0.010	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Esfuerzos en barras, por combinación										
_		Combinación					ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N13/N14	Madera	0.8·PP+0.8·CM1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.004	-0.002	0.000	0.002	0.004	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.001	0.002	0.002	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.001	0.002	0.002	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.011	-0.007	-0.004	0.000	0.004	0.007	0.011
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.003	0.003	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
		1.55.44+1.35.CM1	Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.011	-0.007	-0.004	0.000	0.004	0.007	0.011
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.003	0.003	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.059	-0.039	-0.020	0.000	0.020	0.039	0.059
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.009	0.014	0.016	0.014	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014	-0.014
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.059	-0.040	-0.020	0.000	0.020	0.040	0.059
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.009	0.015	0.017	0.015	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.063	-0.042	-0.021	0.000	0.021	0.042	0.063
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	Esfuerzos en barras, por combinación												
Barra		Combinación	Esfuerzo			Posici	ones en la	barra					
Dalla	Tipo	Descripción	LSIUEIZO	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m			
			Му	0.000	0.009	0.015	0.017	0.015	0.009	0.000			
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015			
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
			Vz	-0.063	-0.042	-0.021	0.000	0.021	0.042	0.063			
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
			Му	0.000	0.010	0.016	0.018	0.016	0.010	0.000			
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000			

Esfuerzos en barras, por combinación										
		Combinación					ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N5/N13	Madera	0.8·PP+0.8·CM1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
-,			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.004	-0.002	0.000	0.002	0.004	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.002	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.002	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
		0.011 11.55 0.11	Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.011	-0.007	-0.004	0.000	0.004	0.007	0.011
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.002	0.003	0.003	0.003	0.002	0.000
			Mz	0.000	0.002	0.000	0.000	0.000	0.002	0.000
		1.35·PP+1.35·CM1	N	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
		1.55 11 11.55 CM	Vy	0.002	0.002	0.002	0.002	0.000	0.002	0.002
			Vz	-0.011	-0.007	-0.004	0.000	0.004	0.007	0.011
			Mt	0.000	0.007	0.000	0.000	0.000	0.007	0.000
			My	0.000	0.000	0.003	0.003	0.003	0.000	0.000
			Mz	0.000	0.002	0.000	0.000	0.000	0.002	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012
		0.011 10.0 0.11111.5 Q1	Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.059	-0.039	-0.020	0.000	0.020	0.039	0.059
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.009	0.015	0.016	0.015	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012
		2.55 6.5 6	Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.059	-0.040	-0.020	0.000	0.020	0.040	0.059
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.009	0.015	0.017	0.015	0.009	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.063	-0.042	-0.021	0.000	0.021	0.042	0.063
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.010	0.016	0.018	0.016	0.010	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N N	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.063	-0.042	-0.021	0.000	0.021	0.042	0.063
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.000	0.000	0.000	0.000	0.000	0.000

puente 4.60 m Fecha: 03/07/25

	Esfuerzos en barras, por combinación											
Важка	Combinación		Esfuerzo		Posiciones en la barra							
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
	Mz 0.000 0.000 0.000 0.000 0.000 0.000 0.000											

2.3.2.1.3. Envolventes

		Envolv	entes de	los esfue	rzos en b	arras			
Barra	Tipo de combinación	Esfuerzo			Posici	ones en la	barra		
Dalla	Tipo de combinación	LSIUEIZO	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N1/N11	Madera	N_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$N_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Vy_{máx}$	0.002	0.002	0.002	0.002	0.002	0.002	0.002
		Vz_{min}	-0.235	-0.224	-0.212	-0.201	-0.189	-0.178	-0.166
		$Vz_{máx}$	-0.031	-0.029	-0.028	-0.026	-0.024	-0.023	-0.021
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My_{min}	0.000	0.006	0.011	0.016	0.021	0.026	0.030
		My _{máx}	0.000	0.044	0.086	0.125	0.163	0.198	0.231
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	-0.001
		$Mz_{m\acute{a}x}$	0.002	0.001	0.001	0.000	0.000	0.000	0.000

		Envolv	ventes de	los esfue	rzos en b	arras			
Barra	Tipo de combinación	Esfuerzo			Posici	ones en la	barra		
Dalla	Tipo de combinación	LSIUEIZO	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N11/N7	Madera	N _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		N _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy _{mín}	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		$Vy_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	-0.101	-0.090	-0.078	-0.067	-0.055	-0.044	-0.032
		$Vz_{máx}$	-0.014	-0.012	-0.010	-0.009	-0.007	-0.005	-0.004
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.030	0.032	0.035	0.036	0.038	0.039	0.040
		My _{máx}	0.231	0.249	0.265	0.279	0.291	0.300	0.308
		Mz_{min}	-0.001	-0.001	0.000	0.000	0.000	0.000	0.000
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Envol	ventes de	los esfue	erzos en l	parras			
Parra	Tino do combinación	Ecfuerze			Posici	ones en la	barra		
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N7/N9	Madera	N _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$N_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Vy_{máx}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz_{min}	0.004	0.005	0.007	0.009	0.010	0.012	0.014
		$Vz_{máx}$	0.032	0.044	0.055	0.067	0.078	0.090	0.101
		Mt_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My_{min}	0.040	0.039	0.038	0.036	0.035	0.032	0.030
		My _{máx}	0.308	0.300	0.291	0.279	0.265	0.249	0.231
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	-0.001	-0.001
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Envol	ventes de	los esfu	erzos en l	oarras			
Barra	Tipo de combinación	Esfuerzo			Posici	ones en la	barra		
Dalla	Tipo de combinación	LSideizo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N9/N2	Madera	N _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		N _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy_{min}	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
		Vy _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	0.021	0.023	0.024	0.026	0.028	0.029	0.031
		$Vz_{máx}$	0.166	0.178	0.189	0.201	0.212	0.224	0.235
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.030	0.026	0.021	0.016	0.011	0.006	0.000
		My _{máx}	0.231	0.198	0.163	0.125	0.086	0.044	0.000
		Mz _{mín}	-0.001	0.000	0.000	0.000	0.000	0.000	0.000
		Mz _{máx}	0.000	0.000	0.000	0.000	0.001	0.001	0.002

	Envolventes de	los esfue	erzos en	barras	
Parra	Tino do combinación	Ecfuerzo	Posicio	ones en la	barra
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.300 m	0.600 m
N2/N6	Madera	N_{min}	-0.161	-0.161	-0.161
		$N_{máx}$	-0.019	-0.019	-0.019
		Vy_{min}	0.001	0.001	0.001
		$Vy_{máx}$	0.006	0.006	0.006
		Vz_{min}	-0.033	-0.032	-0.032
		$Vz_{m\acute{a}x}$	-0.004	-0.004	-0.003
		Mt_{min}	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000
		My_{min}	-0.006	0.000	0.001
		$My_{máx}$	-0.001	0.003	0.013
		Mz_{min}	0.000	0.000	-0.002
		$Mz_{máx}$	0.002	0.000	0.000

	Envolventes de	los esfue	erzos en	barras	
Barra	Tipo de combinación	Ecfuerze	Posicio	ones en la	barra
Barra	Tipo de combinación	LSiueizo	0.000 m	0.300 m	0.600 m
N6/N3	Madera	N_{min}	-0.161	-0.161	-0.161
		$N_{máx}$	-0.019	-0.019	-0.019
		Vy_{min}	-0.006	-0.006	-0.006
		$Vy_{máx}$	-0.001	-0.001	-0.001
		Vz_{min}	0.003	0.004	0.004
		$Vz_{m\acute{a}x}$	0.032	0.032	0.033
		Mt_{min}	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000
		My _{mín}	0.001	0.000	-0.006
		$My_{máx}$	0.013	0.003	-0.001
		Mz_{min}	-0.002	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.002

		Envolv	entes de	los esfue	rzos en b	arras			
Вокко	Tino do combinación	Ecfuerzo			Posici	ones en la	barra		
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N4/N12	Madera	N_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$N_{\text{máx}}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy_{min}	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
		$Vy_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	-0.235	-0.224	-0.212	-0.201	-0.189	-0.178	-0.166
		$Vz_{máx}$	-0.031	-0.029	-0.028	-0.026	-0.024	-0.023	-0.021
		Mt_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My_{min}	0.000	0.006	0.011	0.016	0.021	0.026	0.030
		My _{máx}	0.000	0.044	0.086	0.125	0.163	0.198	0.231
		Mz_{min}	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.001

		Envolv	entes de	los esfue	rzos en b	arras			
Barra	Tipo de combinación	Esfuerzo			Posici	ones en la	barra		
Dalla	Tipo de combinación	LSIUEIZO	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N12/N8	Madera	N _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		N _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy _{máx}	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz_{min}	-0.101	-0.090	-0.078	-0.067	-0.055	-0.044	-0.032
		$Vz_{máx}$	-0.014	-0.012	-0.010	-0.009	-0.007	-0.005	-0.004
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.030	0.032	0.035	0.036	0.038	0.039	0.040
		My _{máx}	0.231	0.249	0.265	0.279	0.291	0.300	0.308
		Mz _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mz _{máx}	0.001	0.001	0.000	0.000	0.000	0.000	0.000

		Envolv	entes de	los esfue	rzos en b	arras			
Barra	Tipo de combinación	Esfuerzo			Posici	ones en la	barra		
Barra	Tipo de combinación	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N8/N10	Madera	N_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$N_{\text{máx}}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy_{min}	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		$Vy_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	0.004	0.005	0.007	0.009	0.010	0.012	0.014
		$Vz_{máx}$	0.032	0.044	0.055	0.067	0.078	0.090	0.101
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.040	0.039	0.038	0.036	0.035	0.032	0.030
		My _{máx}	0.308	0.300	0.291	0.279	0.265	0.249	0.231
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.000	0.000	0.000	0.001	0.001

	Envolventes de los esfuerzos en barras										
Darra	Tipo de combinación	Ecfuerzo	Posiciones en la barra								
Barra Tipo d	Tipo de combinación	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
N10/N3	Madera	N _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		N _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

		Envolv	entes de	los esfue	rzos en b	arras					
Barra	Tipo de combinación	Esfuerzo		Posiciones en la barra							
Dalla	Tipo de combinación	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m		
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		$Vy_{máx}$	0.002	0.002	0.002	0.002	0.002	0.002	0.002		
		Vz_{min}	0.021	0.023	0.024	0.026	0.028	0.029	0.031		
		$Vz_{máx}$	0.166	0.178	0.189	0.201	0.212	0.224	0.235		
		Mt_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		$Mt_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		My_{min}	0.030	0.026	0.021	0.016	0.011	0.006	0.000		
		My _{máx}	0.231	0.198	0.163	0.125	0.086	0.044	0.000		
		Mz_{min}	0.000	0.000	0.000	0.000	-0.001	-0.001	-0.002		
		$Mz_{máx}$	0.001	0.000	0.000	0.000	0.000	0.000	0.000		

	Envolventes de	los esfue	erzos en	barras			
Barra	Tipo de combinación	Ecfuerze	Posiciones en la barra				
Barra	Tipo de combinación	LSIUEIZO	0.000 m	0.300 m	0.600 m		
N1/N5	Madera	N_{min}	-0.161	-0.161	-0.161		
		$N_{máx}$	-0.019	-0.019	-0.019		
		Vy_{min}	-0.006	-0.006	-0.006		
		$Vy_{máx}$	-0.001	-0.001	-0.001		
		Vz_{min}	-0.033	-0.032	-0.032		
		$Vz_{m\acute{a}x}$	-0.004	-0.004	-0.003		
		Mt_{min}	0.000	0.000	0.000		
		Mt _{máx}	0.000	0.000	0.000		
		My_{min}	-0.006	0.000	0.001		
		My _{máx}	-0.001	0.003	0.013		
		Mz_{min}	-0.002	0.000	0.000		
		Mz _{máx}	0.000	0.000	0.002		

	Envolventes de	los esfue	erzos en	barras	
Barra	Tipo do combinación	Ecfuerze	Posicio	ones en la	barra
Barra	Tipo de combinación	LSIUEIZU	0.000 m	0.300 m	0.600 m
N5/N4	Madera	N_{min}	-0.161	-0.161	-0.161
		$N_{máx}$	-0.019	-0.019	-0.019
		Vy_{min}	0.001	0.001	0.001
		$Vy_{máx}$	0.006	0.006	0.006
		Vz_{min}	0.003	0.004	0.004
		$Vz_{m\acute{a}x}$	0.032	0.032	0.033
		Mt_{min}	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000
		My_{min}	0.001	0.000	-0.006
		$My_{máx}$	0.013	0.003	-0.001
		Mz_{min}	0.000	0.000	-0.002
		$Mz_{máx}$	0.002	0.000	0.000

	Envolventes de	los esfue	rzos en b	parras	
Parra	Tino do combinación	Ecfuerzo	Posicio	ones en la	barra
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m
N7/N14	Madera	N_{min}	0.000	0.000	0.000
		$N_{máx}$	0.003	0.003	0.003
		Vy_{min}	0.000	0.000	0.000
		$Vy_{\text{máx}}$	0.000	0.000	0.000
		Vz_{min}	-0.065	-0.064	-0.063
		$Vz_{\text{máx}}$	-0.007	-0.007	-0.007
		Mt_{min}	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000
		My_{min}	0.000	0.002	0.004
		$My_{\text{máx}}$	0.000	0.019	0.039
		Mz_{min}	0.000	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.000

	Envolventes de	los esfue	rzos en l	oarras	
Barra	Tino do combinación	Ecfuerze	Posicio	ones en la	barra
Dalla	Tipo de combinación	LSIUEIZO	0.000 m	0.300 m	0.600 m
N14/N8	Madera	N_{min}	0.000	0.000	0.000
		$N_{máx}$	0.003	0.003	0.003
		Vy_{min}	0.000	0.000	0.000
		$Vy_{m\acute{a}x}$	0.000	0.000	0.000
		Vz_{min}	0.007	0.007	0.007
		$Vz_{\text{máx}}$	0.063	0.064	0.065
		Mt_{min}	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000
		My_{min}	0.004	0.002	0.000
		$My_{\text{máx}}$	0.039	0.019	0.000
		Mz_{min}	0.000	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.000

	Envolventes de	los esfue	rzos en l	arras	
Barra	Tino do combinación	Ecfuerze	Posicio	ones en la	barra
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m
N9/N15	Madera	N_{min}	-0.004	-0.004	-0.004
		$N_{máx}$	0.000	0.000	0.000
		Vy_{min}	0.000	0.000	0.000
		$Vy_{m\acute{a}x}$	0.001	0.001	0.001
		Vz_{min}	-0.065	-0.064	-0.063
		$Vz_{\text{máx}}$	-0.007	-0.007	-0.007
		Mt_{min}	0.000	0.000	0.000
		$Mt_{m\acute{a}x}$	0.000	0.000	0.000
		My_{min}	0.000	0.002	0.004
		$My_{\text{máx}}$	0.000	0.019	0.038
		Mz_{min}	0.000	0.000	-0.001
		$Mz_{máx}$	0.000	0.000	0.000

	Envolventes de l	os esfuei	zos en b	arras	
Вомио	Tina da combinación	Cofor-o	Posicio	ones en la	barra
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m
N15/N10	Madera	N_{min}	-0.004	-0.004	-0.004
		$N_{máx}$	0.000	0.000	0.000
		Vy_{min}	-0.001	-0.001	-0.001
		$Vy_{máx}$	0.000	0.000	0.000
		Vz_{min}	0.007	0.007	0.007
		$Vz_{\text{máx}}$	0.063	0.064	0.065
		Mt_{min}	0.000	0.000	0.000
		$Mt_{m\acute{a}x}$	0.000	0.000	0.000
		My_{min}	0.004	0.002	0.000
		$My_{máx}$	0.038	0.019	0.000
		Mz_{min}	-0.001	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.000

	Envolventes de los esfuerzos en barras										
Barra	Tipo de combinación	Ecfuerze	Posicio	ones en la	barra						
Dalla	Tipo de combinación	LSiueizo	0.000 m	0.300 m	0.600 m						
N11/N13	Madera	N_{min}	-0.004	-0.004	-0.004						
		$N_{máx}$	0.000	0.000	0.000						
		Vy_{min}	-0.001	-0.001	-0.001						
		$Vy_{m\acute{a}x}$	0.000	0.000	0.000						
		Vz_{min}	-0.065	-0.064	-0.063						
		$Vz_{\text{máx}}$	-0.007	-0.007	-0.007						
		Mt_{min}	0.000	0.000	0.000						
		$Mt_{m\acute{a}x}$	0.000	0.000	0.000						
		My_{min}	0.000	0.002	0.004						
		$My_{máx}$	0.000	0.019	0.038						
		Mz_{min}	0.000	0.000	0.000						
		$Mz_{máx}$	0.000	0.000	0.001						

	Envolventes de l	os esfuei	rzos en b	arras	
Barra	Tino do combinación	Ecfuerze	Posicio	ones en la	barra
Barra	Tipo de combinación	LSiueizo	0.000 m	0.300 m	0.600 m
N13/N12	Madera	N_{min}	-0.004	-0.004	-0.004
		$N_{máx}$	0.000	0.000	0.000
		Vy_{min}	0.000	0.000	0.000
		$Vy_{m\acute{a}x}$	0.001	0.001	0.001
		Vz_{min}	0.007	0.007	0.007
		$Vz_{\text{máx}}$	0.063	0.064	0.065
		Mt_{min}	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000
		My_{min}	0.004	0.002	0.000
		$My_{máx}$	0.038	0.019	0.000
		Mz_{min}	0.000	0.000	0.000
		$Mz_{máx}$	0.001	0.000	0.000

		Envolv	entes de	los esfue	rzos en b	arras			
Вакка	Tino do combinación	Ecfuerzo			Posici	ones en la	barra		
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N15/N6	Madera	N _{mín}	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013
		N _{máx}	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	-0.063	-0.042	-0.021	0.000	0.002	0.004	0.007
		$Vz_{máx}$	-0.007	-0.004	-0.002	0.000	0.021	0.042	0.063
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.000	0.001	0.002	0.002	0.002	0.001	0.000
		My _{máx}	0.000	0.010	0.016	0.018	0.016	0.010	0.000
		Mz _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Envolv	entes de	los esfue	rzos en ba	arras			
Barra	Tipo de combinación	Esfuerzo			Posici	ones en la	barra		
Dalla	Tipo de combinación	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N14/N15	Madera	N_{min}	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015
		$N_{\text{máx}}$	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Vy_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	-0.063	-0.042	-0.021	0.000	0.002	0.004	0.007
		$Vz_{máx}$	-0.007	-0.004	-0.002	0.000	0.021	0.042	0.063
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My_{min}	0.000	0.001	0.002	0.002	0.002	0.001	0.000
		My _{máx}	0.000	0.010	0.016	0.018	0.016	0.010	0.000
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		Envolv	entes de	los esfuei	rzos en ba	arras			
Barra	Tipo de combinación	Ecfuerzo			Posici	ones en la	barra		·
Darra	Tipo de combinación	Esfuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N13/N14	Madera	N_{min}	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015
		$N_{\text{máx}}$	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Vy_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	-0.063	-0.042	-0.021	0.000	0.002	0.004	0.007
		$Vz_{máx}$	-0.007	-0.004	-0.002	0.000	0.021	0.042	0.063
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.000	0.001	0.002	0.002	0.002	0.001	0.000
		My _{máx}	0.000	0.010	0.016	0.018	0.016	0.010	0.000
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Envolventes de los esfuerzos en barras									
Вакка	Tino do combinación	Ecfuerzo	Posiciones en la barra						
Barra	Tipo de combinación	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m
N5/N13	Madera	N_{min}	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013	-0.013
		$N_{máx}$	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001

puente 4.60 m Fecha: 03/07/25

		Envolv	entes de	los esfue	rzos en b	arras				
Barra	Tipo de combinación	Esfuerzo	Posiciones en la barra							
Dalla	Tipo de combinación	Estuerzo	0.000 m	0.192 m	0.383 m	0.575 m	0.767 m	0.958 m	1.150 m	
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		$Vy_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vz_{min}	-0.063	-0.042	-0.021	0.000	0.002	0.004	0.007	
		$Vz_{máx}$	-0.007	-0.004	-0.002	0.000	0.021	0.042	0.063	
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		My _{mín}	0.000	0.001	0.002	0.002	0.002	0.001	0.000	
		My _{máx}	0.000	0.010	0.016	0.018	0.016	0.010	0.000	
		Mz _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

2.3.2.2. Resistencia

Referencias:

N: Esfuerzo axil (t)

Vy: Esfuerzo cortante según el eje local Y de la barra. (t) Vz: Esfuerzo cortante según el eje local Z de la barra. (t)

Mt: Momento torsor (t·m)

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de la barra). (t⋅m) Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de la barra). (t⋅m)

Los esfuerzos indicados son los correspondientes a la combinación pésima, es decir, aquella que

Origen de los esfuerzos pésimos:

- G: Sólo gravitatorias

- GV: Gravitatorias + viento

- GS: Gravitatorias + sismo

- GVS: Gravitatorias + viento + sismo

demanda la máxima resistencia de la sección.

 η : Aprovechamiento de la resistencia. La barra cumple con las condiciones de resistencia de la norma si se cumple que $\eta \le 100$ %.

			Co	mprobac	ión de res	istencia				
		Posición		E	sfuerzos	pésimos				
Barra	η (%)	(m)	N	Vy	Vz	Mt	Му	Mz	Origen	Estado
	, ,	. ,	(t)	(t)	(t)	(t·m)	(t·m)	(t·m)		
N1/N11	69.37	1.150	0.000	0.002	-0.166	0.000	0.231	-0.001	G	Cumple
N11/N7	91.98	1.150	0.000	-0.001	-0.032	0.000	0.308	0.000	G	Cumple
N7/N9	91.98	0.000	0.000	0.001	0.032	0.000	0.308	0.000	G	Cumple
N9/N2	69.37	0.000	0.000	-0.002	0.166	0.000	0.231	-0.001	G	Cumple
N2/N6	25.60	0.600	-0.161	0.006	-0.032	0.000	0.013	-0.002	G	Cumple
N6/N3	25.60	0.000	-0.161	-0.006	0.032	0.000	0.013	-0.002	G	Cumple
N4/N12	69.37	1.150	0.000	-0.002	-0.166	0.000	0.231	0.001	G	Cumple
N12/N8	91.98	1.150	0.000	0.001	-0.032	0.000	0.308	0.000	G	Cumple
N8/N10	91.98	0.000	0.000	-0.001	0.032	0.000	0.308	0.000	G	Cumple
N10/N3	69.37	0.000	0.000	0.002	0.166	0.000	0.231	0.001	G	Cumple
N1/N5	25.60	0.600	-0.161	-0.006	-0.032	0.000	0.013	0.002	G	Cumple
N5/N4	25.60	0.000	-0.161	0.006	0.032	0.000	0.013	0.002	G	Cumple
N7/N14	51.58	0.600	0.003	0.000	-0.063	0.000	0.039	0.000	G	Cumple
N14/N8	51.58	0.000	0.003	0.000	0.063	0.000	0.039	0.000	G	Cumple

puente 4.60 m Fecha: 03/07/25

			Co	mprobac	ión de res	istencia				
		Posición		E	Sfuerzos	pésimos				
Barra	η (%)	(m)	N	Vy	Vz	Mt	Му	Mz	Origen	Estado
	(70)	(111)	(t)	(t)	(t)	(t·m)	(t·m)	(t·m)		
N9/N15	52.25	0.600	-0.004	0.001	-0.063	0.000	0.038	-0.001	G	Cumple
N15/N10	52.25	0.000	-0.004	-0.001	0.063	0.000	0.038	-0.001	G	Cumple
N11/N13	52.25	0.600	-0.004	-0.001	-0.063	0.000	0.038	0.001	G	Cumple
N13/N12	52.25	0.000	-0.004	0.001	0.063	0.000	0.038	0.001	G	Cumple
N15/N6	24.05	0.575	-0.013	0.000	0.000	0.000	0.018	0.000	G	Cumple
N14/N15	24.00	0.575	-0.015	0.000	0.000	0.000	0.018	0.000	G	Cumple
N13/N14	24.00	0.575	-0.015	0.000	0.000	0.000	0.018	0.000	G	Cumple
N5/N13	24.05	0.575	-0.013	0.000	0.000	0.000	0.018	0.000	G	Cumple

2.3.2.3. Flechas

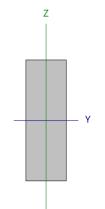
Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.

L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

	Flechas										
Cmina		kima absoluta xy xima relativa xy		xima absoluta xz xima relativa xz		iva absoluta xy tiva relativa xy	Flecha activa absoluta xz Flecha activa relativa xz				
Grupo	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)	Pos. (m)	Flecha (mm)			
N1/N2	1.533	0.09	2.300	14.16	1.533	0.07	2.300	10.79			
141/142	1.533	L/(>1000)	2.300	L/324.9	1.533	L/(>1000)	2.300	L/426.4			
N2/N3	0.600	0.15	0.600	0.27	0.600	0.12	0.600	0.21			
1112/1113	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)			
N4/N3	3.067	0.09	2.300	14.16	3.067	0.07	2.300	10.79			
IN 4 /INO	3.067	L/(>1000)	2.300	L/324.9	3.067	L/(>1000)	2.300	L/426.4			
N1/N4	0.600	0.15	0.600	0.27	0.600	0.12	0.600	0.21			
111/114	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)			
N5/N6	2.300	0.00	2.300	14.84	2.300	0.00	2.300	11.34			
INS/INO	-	L/(>1000)	2.300	L/309.9	-	L/(>1000)	2.300	L/405.8			
NIZ/NIO	0.600	0.00	0.600	0.96	0.600	0.00	0.600	0.76			
N7/N8	-	L/(>1000)	0.600	L/(>1000)	-	L/(>1000)	0.600	L/(>1000)			
N9/N10	0.600	0.09	0.600	0.95	0.600	0.07	0.600	0.76			
N9/N1U	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)			
NI11/NI12	0.600	0.09	0.600	0.95	0.600	0.07	0.600	0.76			
N11/N12	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)			

2.3.2.4. Comprobaciones E.L.U. (Completo)


Nota: Se muestra el listado completo de comprobaciones realizadas para las 10 barras con mayor coeficiente de aprovechamiento.

puente 4.60 m Fecha: 03/07/25

Barra N12/N8

Perfil: GL-180x60 Material: Madera (C24)

Nudos Longitud			(Característica	as mecánica	as
Inicial	Final	(m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N12	N8	1.150	108.00	2916.00	324.00	1022.54

- (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo	lateral
	Plano XY	Plano XZ	Ala sup.	Ala inf.
β	1.00	1.00	0.00	0.00
L _K	1.150	1.150	0.000	0.000
C ₁		-	1.0	00

Notación:

- b: Coeficiente de pandeo
- L_κ: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

Se debe satisfacer:

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} \leq 1$$

h < 0.001 V

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+0.8·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{\text{t.o.d}}$: Tensión de cálculo a tracción paralela a la fibra, dada por:

 $S_{t,0,d}$: 0.00 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t,0,d}: Tracción axial de cálculo paralela a la fibra

0.000 t $N_{t,0,d}$:

A: Área de la sección transversal

A: 108.00 cm²

 \mathbf{f}_{tod} : Resistencia de cálculo a tracción paralela a la fibra, dada por:

 $f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$

60.38 kp/cm²

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

0.55 **k**_h : 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

g_M: Coeficiente parcial para las propiedades del material

puente 4.60 m Fecha: 03/07/25

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} \leq 1$$

h: **0.918**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}^{\dagger}$: kp/cm² 94.98 $S_{m,y,d}$: 0.00 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $M_{v,d}^+$: 0.308 t∙m $M_{y,d}$: t∙m 0.000

Wel: Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{W}_{\mathsf{el,v}}$: cm³ 324.00 kp/cm² $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: 103.51 $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}$: 94.10 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

 $\mathbf{k_{mod}}^{+}$: 0.55 $\mathbf{k}_{\mathsf{mod}}$: 0.50

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración

Clase de servicio

Clase : Permanente Clase: 3

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión

kp/cm² **f**_{m,k} : 244.65 \mathbf{k}_{h} : 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material

gm: 1.30

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \begin{array}{c} \textbf{0.002} \end{array} \hspace{0.2cm} \checkmark \hspace{0.2cm}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.03 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V₁: Cortante de cálculo $V_{y,d}$: 0.001 t A: Área de la sección transversal A: 108.00 cm² **k**_{cr}: Factor que tiene en cuenta la influencia de las fendas **k**_{cr}: 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} \big/ \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) 0.55

f_{vk}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.122}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 2.10 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V_d: Cortante de cálculo $V_{z,d}$: 0.101 t A: Área de la sección transversal A: 108.00 cm²

k_{cr}: Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material gм : 1.30

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m, \gamma, d}}{f_{m, \gamma, d}} + k_m \cdot \frac{\sigma_{m, z, d}}{f_{m, z, d}} \leq 1$$

h: 0.920 V

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.645 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}$: 94.98 kp/cm²

$$\mathbf{s}_{m,z,d}$$
: 0.37 kp/cm²

Donde:

 $\sigma_{m,d} = |M_d|/W_{el}$

M_d: Momento flector de cálculo

 $M_{y,d}$: 0.308 t·m $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: 0.000 t·m

Wel: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 324.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 108.00 cm³ $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm²

$$\mathbf{f}_{m,z,d}$$
: 124.32 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga

duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² **f**_{m,k}: Resistencia característica a flexión **k**_h: Factor de altura, dado por:

 $k_{h,y}$: ___1.00 **k**_{h,z} : __1.20

gm: Coeficiente parcial para las propiedades del material gм : 1.30 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo

flexión esviada y la falta de homogeneidad del material en la sección transversal $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

Se debe satisfacer:

Resistencia a flexión y tracción axial combinadas

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,v,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.920 V

puente 4.60 m Fecha: 03/07/25

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.645 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{tod}: Tensión de cálculo a tracción paralela a la fibra, dada por:

 $S_{t.0.d}$: 0.00 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t.0.d}: Tracción axial de cálculo paralela a la fibra

 $N_{t,0,d}$: 0.000 t

A: Área de la sección transversal

A: 108.00 cm²

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{S}_{m,v,d}$: 94.98 kp/cm² $S_{m,z,d}$: 0.37 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathsf{y,d}}$: 0.308 t·m $\mathbf{M}_{z,d}$: 0.000 t·m

Wel: Módulo resistente elástico de la sección transversal

W_{el,y}: 324.00 cm³

 $\mathbf{f}_{t,0,d}$: Resistencia de cálculo a tracción paralela a la fibra, dada por:

 $W_{el,z}$: 108.00 cm³ $\mathbf{f}_{t,0,d}$: 60.38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga

duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 **k**_h: 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gm: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,z}$: 1.20

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eie z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

puente 4.60 m Fecha: 03/07/25

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

 \mathbf{h} : Canto en flexión o mayor dimensión de la sección en

tracción

h: <u>60.00</u> mm

 g_M : Coeficiente parcial para las propiedades del material

gм : ____1.30_

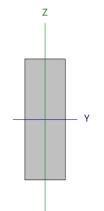
 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_{m}: 0.70$

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)


La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 4.60 m Fecha: 03/07/25

Barra N11/N7

Perfil: GL-180x60 Material: Madera (C24)

Nudos		Longitud	Características mecánicas			
Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N11	N7	1.150	108.00	2916.00	324.00	1022.54

- (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	1.00	1.00	0.00	0.00	
L _K	1.150	1.150	0.000	0.000	
C ₁		-	1.000		

Notación:

- b: Coeficiente de pandeo
- L_κ: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

Se debe satisfacer:

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} \leq 1$$

h < 0.001 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+0.8·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{\text{t.o.d}}$: Tensión de cálculo a tracción paralela a la fibra, dada por:

 $S_{t,0,d}$: 0.00 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t,0,d}: Tracción axial de cálculo paralela a la fibra

0.000 t $N_{t,0,d}$:

A: Área de la sección transversal

A: 108.00 cm²

 \mathbf{f}_{tod} : Resistencia de cálculo a tracción paralela a la fibra, dada por:

60.38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

0.55

k_h: Factor de altura, dado por:

k_h : 1.00

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150

mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

g_M: Coeficiente parcial para las propiedades del material g_M: 1.30

puente 4.60 m Fecha: 03/07/25

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} \leq 1$$

h: **0.918**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

 $\mathbf{s}_{\scriptscriptstyle{\mathsf{m,d}}}$: Tensión de cálculo a flexión, dada por:

$$\mathbf{s}_{m,y,d}^{+} : \underline{94.98} \quad \text{kp/cm}^{2} \\ \mathbf{s}_{m,y,d}^{-} : \underline{0.00} \quad \text{kp/cm}^{2}$$

$$\sigma_{m,d} = |M_d|/W_e$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}^{+}$: 0.308 t·m t·m $\mathbf{M}_{y,d}^{-}$: 0.000 t·m $\mathbf{W}_{\text{el,y}}$: 324.00 cm³

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal \mathbf{f}_{md} : Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}^{+}$: 103.51 kp/cm² kp/cm² kp/cm²

$$\boldsymbol{f}_{\text{m,d}} = \boldsymbol{k}_{\text{mod}} \cdot \boldsymbol{k}_{\text{h}} \cdot \boldsymbol{f}_{\text{m,k}} \big/ \boldsymbol{\gamma}_{\text{M}}$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

 ${f k}_{mod}^{}^{+}: 0.55$ ${f k}_{mod}^{}: 0.50$

Donde:

Clase de duración de la carga

Clase : Larga duración

Clase de servicio

Clase : Permanente

Clase : 3

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² \mathbf{k}_{h} : 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $K_h = 1.0$

 g_M : Coeficiente parcial para las propiedades del material g_M : 1.30

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} 0.002} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.03 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V₁: Cortante de cálculo $V_{y,d}$: 0.001 t A: Área de la sección transversal A: 108.00 cm²

k_{cr}: Factor que tiene en cuenta la influencia de las fendas **k**_{cr}: 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{_{v,d}} = k_{_{mod}} \cdot f_{_{v,k}} \big/ \gamma_{_{M}}$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) 0.55

f_{vk}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.122}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 2.10 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V_d: Cortante de cálculo $V_{z,d}$: 0.101 t A: Área de la sección transversal A: 108.00 cm²

k_{cr}: Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm² gм :

gm: Coeficiente parcial para las propiedades del material

1.30

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.920 V

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.645 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}$: 94.98 kp/cm²

 $\sigma_{m,d} = |M_d|/W_{el}$ Donde:

M_d: Momento flector de cálculo

 $M_{y,d}$: 0.308 t·m $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: 0.000 t·m

Wel: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 324.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 108.00 cm³ $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm²

$$\mathbf{f}_{m,z,d}$$
 : 124.32 kp/cm²

Donde:

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,y}$: ___1.00 **k**_{h,z} : __1.20

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

Se debe satisfacer:

Resistencia a flexión y tracción axial combinadas

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.920 V

puente 4.60 m Fecha: 03/07/25

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.645 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{tod}: Tensión de cálculo a tracción paralela a la fibra, dada por:

 $S_{t.0.d}$: 0.00 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t.0.d}: Tracción axial de cálculo paralela a la fibra

 $N_{t,0,d}$: 0.000 t

A: Área de la sección transversal

A: 108.00 cm²

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{S}_{m,v,d}$: 94.98 kp/cm² $S_{m,z,d}$: 0.37 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathsf{y,d}}$: 0.308 t·m $\mathbf{M}_{z,d}$: 0.000 t·m

Wel: Módulo resistente elástico de la sección transversal

W_{el,y}: 324.00 cm³

 $\mathbf{f}_{t,0,d}$: Resistencia de cálculo a tracción paralela a la fibra, dada por:

 $W_{el,z}$: 108.00 cm³ $\mathbf{f}_{t,0,d}$: 60.38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 **k**_h: 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares

de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gm: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,z}$: 1.20

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eie z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

puente 4.60 m Fecha: 03/07/25

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en

tracción

g_M: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

h: 60.00 mm

м: 1.30

 $k_m : 0.70$

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

Fecha: 03/07/25

0.000

Barra N7/N9

Perfil: GL-180x60 Material: Madera (C24) Nudos Características mecánicas Longitud Z $I_{v}^{(1)}$ $I_{7}^{(1)}$ I,(2) Área (m) Inicial Final (cm²)(cm4) (cm4) (cm4) N7 N9 1.150 108.00 2916.00 324.00 1022.54 Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme Pandeo lateral Pandeo Plano XY Plano XZ Ala sup. Ala inf. 1.00 1.00 0.00 0.00 β

1.150

0.000

1.000

C₁

 L_{κ}

b: Coeficiente de pandeo

L_κ: Longitud de pandeo (m)

C1: Factor de modificación para el momento crítico

1.150

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

Se debe satisfacer:

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} \leq 1 \hspace{1cm} \text{h < } \underline{\quad \textbf{0.001} \quad} \text{ } \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 0.8 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

 $\mathbf{s}_{\mathsf{to.d.}}$: Tensión de cálculo a tracción paralela a la fibra, dada por: $\mathbf{s}_{\mathsf{to.d.}}$: 0.00 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

 $\mathbf{N}_{\mathbf{t},\mathbf{0},\mathbf{d}}$: Tracción axial de cálculo paralela a la fibra $\mathbf{N}_{\mathbf{t},\mathbf{0},\mathbf{d}}$: $\underline{0.000}$ t

A: Área de la sección transversal A: $\underline{108.00}$ cm² $\mathbf{f}_{\mathsf{t,0,d}}$: Resistencia de cálculo a tracción paralela a la fibra, dada por: $\mathbf{f}_{\mathsf{t,0,d}}$: $\underline{60.38}$ kp/cm²

$$\boldsymbol{f}_{t,0,d} = \boldsymbol{k}_{mod} \cdot \boldsymbol{k}_{h} \cdot \boldsymbol{f}_{t,0,k} \big/ \boldsymbol{\gamma}_{M}$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{\mathsf{t,0,k}}$: Resistencia característica a tracción paralela a la fibra $\mathbf{f}_{\mathsf{t,0,k}}$: $\underline{142.71}$ kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : __1.30__

0.55

1.00

k_h :

puente 4.60 m Fecha: 03/07/25

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} \leq 1$$

h: **0.918**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m.d}: Tensión de cálculo a flexión, dada por:

$$\mathbf{s}_{m,y,d}^{+} : \underline{94.98} \quad \text{kp/cm}^{2} \\ \mathbf{s}_{m,y,d}^{-} : \underline{0.00} \quad \text{kp/cm}^{2}$$

$$\sigma_{m,d} = |M_d|/W_e$$

Donde:

M_d: Momento flector de cálculo

 $M_{v,d}^+$: 0.308 t∙m $M_{y,d}$: t∙m 0.000 $\mathbf{W}_{\mathsf{el,v}}$: cm³ 324.00

Wel: Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

kp/cm² $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: 103.51 $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}$: 94.10 kp/cm²

$$\boldsymbol{f}_{m,d} = \boldsymbol{k}_{mod} \cdot \boldsymbol{k}_h \cdot \boldsymbol{f}_{m,k} \big/ \boldsymbol{\gamma}_M$$

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

 $\mathbf{k_{mod}}^{+}$: 0.55 $\mathbf{k}_{\mathsf{mod}}$: 0.50

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración

Clase de servicio

Clase : Permanente Clase: 3

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión

kp/cm² **f**_{m,k} : 244.65

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_{h} : 1.00

gm: 1.30

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \begin{array}{c} \textbf{0.002} \end{array} \hspace{0.2cm} \checkmark \hspace{0.2cm}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.35 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{y,d}$: 0.03 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{y,d}$: 0.001 tA: Área de la sección transversalA: 108.00 cm² k_{cr} : Factor que tiene en cuenta la influencia de las fendas k_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por:

$$f_{_{v,d}} = k_{_{mod}} \cdot f_{_{v,k}} \big/ \gamma_{_{M}}$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : $\frac{40.77}{1.30}$

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.122}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: \mathbf{t}_{zd} : 2.10 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{z,d}$: 0.101 tA: Área de la sección transversalA: 108.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

 $\mathbf{f}_{v,d}$: 17.25 kp/cm²

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m, \gamma, d}}{f_{m, \gamma, d}} + k_m \cdot \frac{\sigma_{m, z, d}}{f_{m, z, d}} \leq 1$$

h: 0.920 V

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.645 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}$: 94.98 kp/cm² $S_{m,z,d}$: 0.37 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $M_{y,d}$: 0.308 t·m $\mathbf{M}_{\mathsf{z,d}}$: 0.000 t·m

Wel: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 324.00 cm³ **W**_{el,z}: 108.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,y}$: ___1.00 **k**_{h,z} : __1.20

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

Se debe satisfacer:

Resistencia a flexión y tracción axial combinadas

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.920 V

puente 4.60 m Fecha: 03/07/25

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.645 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{tod}: Tensión de cálculo a tracción paralela a la fibra, dada por:

 $S_{t.0.d}$: 0.00 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t.0.d}: Tracción axial de cálculo paralela a la fibra

 $N_{t,0,d}$: 0.000 t

A: Área de la sección transversal

A: 108.00 cm²

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{S}_{m,v,d}$: 94.98 kp/cm² $S_{m,z,d}$: 0.37 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathsf{y,d}}$: 0.308 t·m $\mathbf{M}_{z,d}$: 0.000 t·m

Wel: Módulo resistente elástico de la sección transversal

W_{el,y}: 324.00 cm³ $W_{el,z}$: 108.00 cm³

 $\mathbf{f}_{t,0,d}$: Resistencia de cálculo a tracción paralela a la fibra, dada por:

 $\mathbf{f}_{t,0,d}$: 60.38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 **k**_h: 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gm: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,z}$: 1.20

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eie z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

puente 4.60 m Fecha: 03/07/25

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

 \mathbf{h} : Canto en flexión o mayor dimensión de la sección en

tracción

h: <u>60.00</u> mm

 g_M : Coeficiente parcial para las propiedades del material

м: 1.30

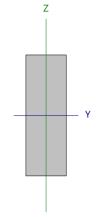
 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_{m}: 0.70$

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)


La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 4.60 m Fecha: 03/07/25

Barra N8/N10

Perfil: GL-180x60 Material: Madera (C24)

Nudos		Longitud	(Característica	as mecánica	as
Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N8	N10	1.150	108.00	2916.00	324.00	1022.54

- (1) Inercia respecto al eje indicado
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral					
	Plano XY	Plano XZ	Ala sup.	Ala inf.				
β	1.00	1.00	0.00	0.00				
L_{K}	1.150	1.150	0.000	0.000				
C ₁		-	1.000					

Notación:

- b: Coeficiente de pandeo
- L_κ: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

Se debe satisfacer:

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} \leq 1$$

h < 0.001 V

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+0.8·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{\text{t.o.d}}$: Tensión de cálculo a tracción paralela a la fibra, dada por:

$$\mathbf{S}_{\text{t.o.d}}$$
: 0.00 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t,0,d}: Tracción axial de cálculo paralela a la fibra

0.000 t $N_{t,0,d}$:

A: Área de la sección transversal

A: 108.00 cm²

 \mathbf{f}_{tod} : Resistencia de cálculo a tracción paralela a la fibra, dada por:

60.38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

0.55

k_h: Factor de altura, dado por:

k_h : 1.00

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150

mm:

 $k_{h} = 1.0$ $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

g_M: Coeficiente parcial para las propiedades del material

g_M : 1.30

puente 4.60 m Fecha: 03/07/25

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} \leq 1$$

h: **0.918**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

 $\mathbf{s}_{\text{m,d}}$: Tensión de cálculo a flexión, dada por:

94.98 kp/cm²

 $\sigma_{m,d} = |M_d|/W_{el}$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}^{+}$: 0.308 t·m t·m

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal \mathbf{f}_{md} : Resistencia de cálculo a flexión, dada por:

 $egin{array}{lll} m{W}_{\text{el,y}} & : & 324.00 & \text{cm}^3 \\ m{f}_{\text{m,y,d}}^{\ +} & : & 103.51 & \text{kp/cm}^2 \\ m{f}_{\text{m,y,d}} & : & 94.10 & \text{kp/cm}^2 \\ \end{array}$

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

 ${f k}_{mod}^{}^{+}: 0.55$ ${f k}_{mod}^{}: 0.50$

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración

Clase de servicio

Clase: Permanente
Clase: 3

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² \mathbf{k}_{h} : 1.00

 \mathbf{k}_{h} : Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material

g_M: 1.30

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} \hspace{0.2cm} \hspace{$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.35 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.03 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{y,d}: \underline{0.001} t$ A: Área de la sección transversal $A: \underline{108.00} cm^2$ k_{cr} : Factor que tiene en cuenta la influencia de las fendas $k_{cr}: \underline{0.67}$

 $\mathbf{f}_{\mathsf{v,d}}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{\mathsf{v,d}}$: $\frac{}{17.25}$ kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} \big/ \gamma_{M}$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: $\underline{40.77}$ kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.122}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: \mathbf{t}_{zd} : 2.10 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{z,d}$: 0.101 t A: Área de la sección transversal A : 108.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M :

1.30

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.920 V

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.645 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}$: 94.98 kp/cm² $S_{m,z,d}$: 0.37 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $M_{y,d}$: 0.308 t·m $\mathbf{M}_{\mathsf{z,d}}$: 0.000 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 324.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 108.00 cm³ $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm²

 $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,y}$: ___1.00 **k**_{h,z} : __1.20

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

Se debe satisfacer:

Resistencia a flexión y tracción axial combinadas

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.920 V

puente 4.60 m Fecha: 03/07/25

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.645 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{tod}: Tensión de cálculo a tracción paralela a la fibra, dada por:

 $S_{t.0.d}$: 0.00 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t.0.d}: Tracción axial de cálculo paralela a la fibra

 $N_{t,0,d}$: 0.000 t

A: Área de la sección transversal

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

A: 108.00 cm²

 $S_{m,v,d}$: 94.98 kp/cm² $S_{m,z,d}$: 0.37 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathsf{y,d}}$: 0.308 t·m $\mathbf{M}_{z,d}$: 0.000 t·m

Wel: Módulo resistente elástico de la sección transversal

W_{el,y}: 324.00 cm³

 $\mathbf{f}_{t,0,d}$: Resistencia de cálculo a tracción paralela a la fibra, dada por:

 $W_{el,z}$: 108.00 cm³ $\mathbf{f}_{t,0,d}$: 60.38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 **k**_h: 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares

de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gm: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,z}$: 1.20

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eie z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

puente 4.60 m Fecha: 03/07/25

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

 \mathbf{h} : Canto en flexión o mayor dimensión de la sección en

tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

h: 60.00 mm

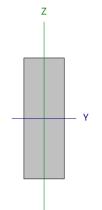
м: 1.30

 $k_m : 0.70$

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)


La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 4.60 m Fecha: 03/07/25

Barra N1/N11

Perfil: GL-180x60 Material: Madera (C24)

Nudos		Lanaitud	(Característica	as mecánica	as
Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N1	N11	1.150	108.00	2916.00	324.00	1022.54

- Notas:

 (1) Inercia respecto al eje indicado

 de inercia a torsión un
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY Plano XZ		Ala sup.	Ala inf.	
β	1.00	1.00	0.00	0.00	
L_{K}	1.150	1.150	0.000	0.000	
C ₁	-	-	1.000		

Notación:

- b: Coeficiente de pandeo
- L_κ: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+0.8·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

S_{c,0,d} :

kp/cm² 0.00

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

Donde:

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

A:

0.000 cm² 108.00

A: Área de la sección transversal

kp/cm² 90.57

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

 $\mathbf{f}_{\mathsf{c},\mathsf{0},\mathsf{d}}$:

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

puente 4.60 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{c,0,k}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rel}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

b_c: Factor asociado a la rectitud de las piezas

rel: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{\text{c,0,k}}}{E_{\text{0,k}}}}$$

Donde:

E_{0,k}: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $\mathbf{f}_{c,o,k}$: Resistencia característica a compresión paralela a <u>l</u>a fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

L_k: Longitud de pandeo de la barra

i: Radio de giro

0.55

 $\mathbf{f}_{c,0,k}$: kp/cm² 214.07

g_M : 1.30

C_{c,v}: 0.98

C_{c,z}: 0.60

 \mathbf{k}_{y} : 0.58 **k**_z : 1.22

b_c ; 0.20 0.38 1.13

75433.23 kp/cm²

kp/cm² 214.07 66.40

1150.00 1150.00 51.96

17.32

mm

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \leq 1$$

0.688

t∙m

kp/cm²

kp/cm²

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m,d}: Tensión de cálculo a flexión, dada por:

kp/cm² 71.24 kp/cm² S_{m,y,d} : 0.00

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo $M_{v,d}^+$:

> $M_{v,d}$: 0.000 t∙m $\mathbf{W}_{\mathsf{el,y}}$: 324.00 cm³ $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: kp/cm² 103.51

> > 94.10

0.55

0.50

244.65

1.30

0.231

Wel: Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y

el contenido de humedad

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración **Clase**: Permanente Clase: 3

 $\mathbf{f}_{m,y,d}$:

 $\mathbf{k}_{\mathsf{mod}}$:

f_{m,k} :

gм :

f_{m,k}: Resistencia característica a flexión

Clase de servicio

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material

k_h : 1.00

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \begin{array}{c} \textbf{0.003} \end{array} \hspace{0.2cm} \checkmark \hspace{0.2cm}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.35 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.05 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{y,d}$: 0.002 t A: Área de la sección transversal A: 108.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: $\underline{17.25}$ kp/cm²

$$f_{_{v,d}} = k_{_{mod}} \cdot f_{_{v,k}} \big/ \gamma_{_{M}}$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: <u>40.77</u> kp/cm²

gm: Coeficiente parcial para las propiedades del material gm: 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.283}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N1, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{t}_{\mathtt{d}}$: Tensión de cálculo a cortante, dada por: $\mathbf{t}_{\mathtt{z},\mathtt{d}}$: 4.88 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{z,d}$: 0.235 t A: Área de la sección transversal A : 108.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: Resistencia característica a cortante $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gм :

1.30

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} + k_{\text{m}} \cdot \frac{\sigma_{\text{m,z,d}}}{f_{\text{m,z,d}}} \leq 1$$

h: 0.694 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}$: 71.24 kp/cm² $S_{m,z,d}$: 0.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathbf{y},\mathbf{d}}$: 0.231 t·m $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: 0.001 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 324.00 cm³ **W**_{el,z}: 108.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga

duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55 **f**_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² **k**_h: Factor de altura, dado por: $k_{h,y}$: 1.00

k_{h,z} : 1.20 gm: Coeficiente parcial para las propiedades del material gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo

flexión esviada y la falta de homogeneidad del material en la sección transversal $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

 $\mathbf{s}_{c.o.d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

$$\sigma_{c0,d} = |N_{c,0,d}|/A$$

Donde:

N_{c.0.d}: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d}$: 0.000 t

A: Área de la sección transversal

A: 108.00 cm² $\mathbf{s}_{m,y,d}$: 71.24 kp/cm²

s_{m,d}: Tensión de cálculo a flexión, dada por:

 $S_{m,z,d}$: 0.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathsf{y,d}}$: 0.231 t·m

Wel: Módulo resistente elástico de la sección transversal

 $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: 0.001 t·m

W_{el,y}: <u>324.00</u> cm³

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

W_{el,z}: 108.00 cm³ $\mathbf{f}_{c,0,d}$: 90.57 kp/cm²

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm²

 $\mathbf{f}_{c,0,k}$: Resistencia característica a compresión paralela a la fibra gm: Coeficiente parcial para las propiedades del material

gм: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 4.60 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $\mathbf{k}_{h,y}$: 1.00 $\mathbf{k}_{h,z}$: 1.20

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $\mathbf{c}_{\mathbf{c}}$: Factor de inestabilidad $\mathbf{c}_{\mathbf{c},\mathbf{y}}$:

k_m : 0.70

60.00 mm

1.30

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 4.60 m Fecha: 03/07/25

Barra N4/N12

Perfil: GL-180x60 Material: Madera (C24) Nudos Características mecánicas Longitud Z $I_{v}^{(1)}$ $I_{z}^{(1)}$ I,(2) Área (m) Inicial Final (cm²)(cm4) (cm4) (cm4) N12 1.150 108.00 2916.00 324.00 1022.54 N4 Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral				
	Plano XY	Plano XZ	Ala sup.	Ala inf.			
β	1.00	1.00	0.00	0.00			
L _K	1.150	1.150	0.000	0.000			
C ₁		-	1.0	00			

Notación:

b: Coeficiente de pandeo

L_κ: Longitud de pandeo (m)

C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

0.001

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h < 0.001

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+0.8·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{\text{c.o.d.}}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

S_{c,0,d} : 0.00 kp/cm²

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

0.000

A: Área de la sección transversal

A: cm² 108.00 **f**_{c,0,d} :

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

kp/cm² 90.57

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

puente 4.60 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{o},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

g_M: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rel}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

 \mathbf{b}_{c} : Factor asociado a la rectitud de las piezas

rel: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{\text{c,0,k}}}{E_{\text{0,k}}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $\mathbf{f}_{c,o,k}$: Resistencia característica a compresión paralela a <u>la</u> fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 \mathbf{L}_{k} : Longitud de pandeo de la barra

i: Radio de giro

k_{mod}: 0.55

f_{c,0,k} : <u>214.07</u> kp/cm²

gm : ____1.30

C_{c,y}: 0.98

c_{c,z}: 0.60

$$k_y : 0.58$$

 $k_z : 1.22$

b_c: 0.20

rel,y : 0.38 rel,z : 1.13

E_{0,k}: 75433.23 kp/cm²

f_{c,0,k} : <u>214.07</u> kp/cm²

y: 22.13 z: 66.40

 $egin{array}{lll} oldsymbol{\mathsf{L}}_{\mathsf{k},\mathsf{y}} & : & \underline{1150.00} & \mathsf{mm} \\ oldsymbol{\mathsf{L}}_{\mathsf{k},\mathsf{z}} & : & \underline{1150.00} & \mathsf{mm} \\ oldsymbol{\mathsf{i}}_{\mathsf{y}} & : & \underline{51.96} & \mathsf{mm} \end{array}$

i_z : <u>17.32</u> mm

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,v,d}}}{f_{\text{m,v,d}}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \textbf{0.688} \hspace{0.2cm} .$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Pesistencia de la sección transversal a flevión:

Resistencia de la sección transversal a flexión:			
$\mathbf{s}_{\scriptscriptstylem,d}$: Tensión de cálculo a flexión, dada por:	S _{m,y,d} : _	71.24	kp/cm²
	S _{m,y,d} :	0.00	kp/cm²
$\sigma_{m,d} = M_d /W_{el}$			
Donde:			
M₄: Momento flector de cálculo	$\mathbf{M}_{y,d}^{+}$:	0.231	t⋅m
	M _{y,d} :	0.000	t⋅m
\mathbf{W}_{el} : Módulo resistente elástico de la sección transversal	$\mathbf{W}_{el,y}$:	324.00	cm ³
$\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:	f _{m,y,d} :	103.51	kp/cm²
	f _{m,y,d} :	94.10	kp/cm²
$\mathbf{f}_{m,d} = \mathbf{k}_{mod} \cdot \mathbf{k}_{h} \cdot \mathbf{f}_{m,k} / \gamma_{M}$			
Donde:			

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y 0.55 el contenido de humedad $\mathbf{k}_{\mathsf{mod}}$: 0.50

Donde:

Clase de duración de la carga **Clase**⁺ : Larga duración

Clase: Permanente Clase de servicio Clase: 3

f_{m,k}: Resistencia característica a flexión **f**_{m,k} : 244.65 kp/cm² \mathbf{k}_{h} : 1.00

k_h: Factor de altura, dado por: Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales

a 150 mm: $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material gм : 1.30

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.003}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.05 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V₁: Cortante de cálculo $V_{y,d}$: 0.002 t A: Área de la sección transversal A: 108.00 cm² **k**_{cr}: Factor que tiene en cuenta la influencia de las fendas **k**_{cr}: 0.67 $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$\mathbf{f}_{v,d}$$
: Resistencia de cálculo a cortante, dada por:

$$f_{v,d} = k_{mod} \cdot f_{v,k} \big/ \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) 0.55 f_{vk}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm² gm: Coeficiente parcial para las propiedades del material 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.283}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N4, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: 4.88 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V_d: Cortante de cálculo $V_{z,d}$: 0.235 t A: Área de la sección transversal A: 108.00 cm² **k**_{cr}: Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55 f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm² gm: Coeficiente parcial para las propiedades del material gм : 1.30

puente 4,60

Listados

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.694 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

0.489

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{\text{m,d}}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 71.24 kp/cm² $\mathbf{s}_{m,z,d}$: 0.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}$: 0.231 t·m $\mathbf{M}_{z,d}$: 0.001 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $\mathbf{W}_{\text{el,y}} : \overline{324.00} \text{ cm}^3$ $\mathbf{W}_{\text{el,z}} : 108.00 \text{ cm}^3$

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y al contenido de humadad (Clase de servicio 3)

duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{\mathsf{m,k}}$: Resistencia característica a flexión $\mathbf{f}_{\mathsf{m,k}}$: 244.65 kp/cm² \mathbf{k}_{h} : Factor de altura, dado por: $\mathbf{k}_{\mathsf{h,y}}$: 1.00

 $\mathbf{k}_{\mathsf{h,z}}: \underline{1.20}$

 g_M : Coeficiente parcial para las propiedades del material g_M : 1.30 g_M : 1.30 g_M : 1.30

flexión esviada y la falta de homogeneidad del material en la sección transversal ${\bf k}_{\rm m}: 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h : <u>0.490</u> 🗸

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

Donde

$$\mathbf{s}_{\scriptscriptstyle{\mathsf{c},\mathsf{0},\mathsf{d}}}$$
: Tensión de cálculo a compresión paralela a la fibra, dada por:

$$\sigma_{co,d} = \left| N_{c,o,d} \right| / A$$

Donde:

$\mathbf{N}_{c,0,d}$:	Compresión	axial de	cálculo	paralela	a la	fibra

$$\mathbf{A} : \underline{108.00} \text{ cm}^2 \\ \mathbf{s}_{m,y,d} : \underline{71.24} \text{ kp/cm}^2$$

$$\boldsymbol{s}_{\scriptscriptstyle{m,d}}$$
: Tensión de cálculo a flexión, dada por:

$$\mathbf{s}_{\mathsf{m,z,d}}$$
: 0.95 kp/cm²

$$\sigma_{m,d} = \left| M_d \right| / W_{el}$$

Donde:

$$\mathbf{f}_{\mathsf{c},\mathsf{o},\mathsf{d}}$$
: Resistencia de cálculo a compresión paralela a la fibra, dada por:

Donde:

$$\mathbf{f}_{c,0,k}$$
: Resistencia característica a compresión paralela a la fibra \mathbf{g}_M : Coeficiente parcial para las propiedades del material

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

$$\mathbf{f}_{m,y,d}$$
: $\frac{103.51}{103.51}$ kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

puente 4.60 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $\mathbf{k}_{h,y}$: 1.00 $\mathbf{k}_{h,z}$: 1.20

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

c_c: Factor de inestabilidad

h: 60.00 mm

gм : <u>1.30</u>

 $\mathbf{k}_{m} : 0.70$ $\mathbf{c}_{c,y} : 0.98$

c_{c,z} : 0.60

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 4.60 m Fecha: 03/07/25

Barra N10/N3

Perfil: GL-180x60 Material: Madera (C24) Nudos Características mecánicas Longitud Z $I_{v}^{(1)}$ $I_{z}^{(1)}$ I,(2) Área (m) Inicial Final (cm²)(cm4) (cm4) (cm4) Ν3 1.150 108.00 2916.00 324.00 1022.54 N10 Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Y Plano XZ Ala sup. Al		Ala inf.	
β	1.00	1.00	0.00	0.00	
L _K	1.150	1.150	0.000	0.000	
C ₁		-	1.0	00	

Notación:

b: Coeficiente de pandeo

L_κ: Longitud de pandeo (m)

C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h < 0.001

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+0.8·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

kp/cm² **S**_{c,0,d} : 0.00

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

0.000

A: Área de la sección transversal

A: cm² 108.00

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

 $\mathbf{f}_{c,0,d}$: kp/cm² 90.57

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

puente 4.60 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{c,0,k}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rel}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

 $\mathbf{b}_{\mathbf{c}}$: Factor asociado a la rectitud de las piezas

rel: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{\text{c,0,k}}}{E_{\text{0,k}}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $\mathbf{f}_{c,o,k}$: Resistencia característica a compresión paralela a <u>la</u> fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 \mathbf{L}_{k} : Longitud de pandeo de la barra

i: Radio de giro

k_{mod}: 0.55

f_{c,**0**,**k**} : 214.07 kp/cm²

gm: 1.30

C_{c,y}: 0.98

c_{c,z}: 0.60

 \mathbf{k}_{y} : 0.58 \mathbf{k}_{z} : 1.22

b_c: 0.20 rel,y: 0.38 rel,z: 1.13

E_{0,k}: 75433.23 kp/cm²

f_{c,o,k}: <u>214.07</u> kp/cm²

y: 22.13 z: 66.40

_k,y : <u>1150.00</u> mm _k,z : <u>1150.00</u> mm

i_v : <u>51.96</u> mm i_z : *17.32* mm

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \le 1 \hspace{1cm} \text{h} \hspace{1cm} : \hspace{1cm} \textbf{\textit{0.688}}$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

Resistencia de la sección transversal a flexión:			
$\mathbf{s}_{\scriptscriptstylem,d}$: Tensión de cálculo a flexión, dada por:	S _{m,y,d} ⁺ : _	71.24	kp/cm²
	S _{m,y,d} :	0.00	kp/cm²
$\sigma_{m,d} = M_d /W_{el}$			
Donde:			
M₄: Momento flector de cálculo	M _{y,d} ⁺ : _	0.231	t·m
	M _{y,d} :	0.000	t·m
\mathbf{W}_{el} : Módulo resistente elástico de la sección transversal	$\mathbf{W}_{el,y}$:	324.00	cm ³
$\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:	f _{m,y,d} + :	103.51	kp/cm²
	f _{m,y,d} :	94.10	kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y \mathbf{k}_{mod}^+ : 0.55 el contenido de humedad \mathbf{k}_{mod}^- : 0.50

Donde:

Clase de duración de la carga Clase⁺ : <u>Larga duración</u>

Clase de servicio

Clase : Permanente

Clase : 3

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm² \mathbf{k}_h : Factor de altura, dado por: \mathbf{k}_h : 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales

rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{\text{h}}=1.0$

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \begin{array}{c} \textbf{0.003} \end{array} \hspace{0.2cm} \checkmark \hspace{0.2cm}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por:

ensión de cálculo a cortante, dada por:
$$\mathbf{t}_{\text{y,d}} : \underline{0.05} \text{ kp/cm}^2$$

$$\tau_{\text{d}} = \frac{3}{2} \cdot \frac{|V_{\text{d}}|}{A \cdot k}$$

Donde:

V₁: Cortante de cálculo $V_{y,d}$: 0.002 t A: Área de la sección transversal A: 108.00 cm² **k**_{cr}: Factor que tiene en cuenta la influencia de las fendas **k**_{cr}: 0.67 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_{M}$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) 0.55 f_{vk}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm² gm: Coeficiente parcial para las propiedades del material 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \le 1 \qquad \qquad h \; : \; \underline{\textbf{0.283}} \; \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 4.88 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V_d: Cortante de cálculo $V_{z,d}$: 0.235 t A: Área de la sección transversal A: 108.00 cm² **k**_{cr}: Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55 f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm² gm: Coeficiente parcial para las propiedades del material gм : 1.30

puente 4.

Listados

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.694 V

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h : **0.489** 🗸

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones $1.35\cdot PP+1.35\cdot CM1+1.5\cdot Q1$.

Donde:

 $\mathbf{s}_{\text{m,d}}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 71.24 kp/cm²

$$\mathbf{s}_{\mathsf{m,z,d}}$$
: 0.95 kp/cm²

 $\sigma_{m,d} = \left| M_d \right| / W_{el}$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}$: 0.231 t·m $\mathbf{M}_{z,d}$: 0.001 t·m

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal

 $\mathbf{W}_{\text{el,y}}$: 324.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $egin{array}{lll} m{W}_{\text{el,z}} & : & \underline{108.00} & \text{cm}^3 \\ m{f}_{\text{m,y,d}} & : & \underline{103.51} & \text{kp/cm}^2 \\ m{f}_{\text{m,z,d}} & : & \underline{124.32} & \text{kp/cm}^2 \\ \end{array}$

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

k_{mod} : 0.55

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión

f_{m,k} : <u>244.65</u> kp/cm²

 $\boldsymbol{k}_{h} \text{:}\ \mathsf{Factor}\ \mathsf{de}\ \mathsf{altura},\ \mathsf{dado}\ \mathsf{por} \text{:}$

 $\mathbf{k}_{h,y}$: 1.00 $\mathbf{k}_{h,z}$: 1.20

gm: Coeficiente parcial para las propiedades del material

 $\mathbf{K}_{h,z}$: 1.20

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

k_m: 0.70

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

$$\mathbf{s}_{\scriptscriptstyle{\mathsf{c},\mathsf{0},\mathsf{d}}}$$
: Tensión de cálculo a compresión paralela a la fibra, dada por:

$$\mathbf{S}_{c,0,d}$$
: 0.00 kp/cm²

$$\sigma_{c0,d} = |N_{c,0,d}|/A$$

Donde:

$$\mathbf{N}_{\mathsf{c},\mathsf{o},\mathsf{d}}$$
: Compresión axial de cálculo paralela a la fibra

$$N_{c,0,d}$$
: 0.000 t

$$\mathbf{A} : \underline{108.00} \text{ cm}^2 \\ \mathbf{s}_{m,y,d} : \underline{71.24} \text{ kp/cm}^2$$

$$\mathbf{s}_{m,z,d}$$
: 0.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

$$\mathbf{M}_{z,d}$$
 : 0.001 t·m $\mathbf{W}_{el,y}$: 324.00 cm³

$$W_{el,z}$$
: 108.00 cm³

$$\mathbf{f}_{c,0,d}$$
: Resistencia de cálculo a compresión paralela a la fibra, dada por:

$$\mathbf{f}_{c,0,d}$$
: 90.57 kp/cm²

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

$$\mathbf{k}_{mod}$$
: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

$$\mathbf{k}_{mod}$$
 : 0.55
 $\mathbf{f}_{c,o,k}$: 214.07 kp/cm²

$$\mathbf{f}_{c,0,k}$$
: Resistencia característica a compresión paralela a la fibra \mathbf{g}_{M} : Coeficiente parcial para las propiedades del material

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

$$\mathbf{f}_{m,y,d}$$
: $\frac{103.51}{124.32}$ kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 4.60 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión

k_h: Factor de altura, dado por:

 $\mathbf{f}_{m,k}$: <u>244.65</u> kp/cm² $\mathbf{k}_{h,y}$: 1.00

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

 $\mathbf{k}_{h,z}$: 1.20

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_h = 1.0$

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

c_c: Factor de inestabilidad

h : <u>60.00</u> mm

gм : <u>1.30</u>

 $\mathbf{k}_{m} : 0.70$ $\mathbf{c}_{c,y} : 0.98$

c_{c,z}: 0.60

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 4.60 m Fecha: 03/07/25

Barra N9/N2

Dalla N9/N2									
Perfil: GL-180x60 Material: Madera (C24)									
	Nudos				Características mecánicas				
z 	Inicial	Final	Longitud (m)	/	Área cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)	
	N9	N2	1.150	10	08.00	2916.00	324.00	1022.54	
	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme								
		Pandeo				Pandeo lateral			
Y		Plar	Plano XY		no XZ	Ala s	up.	Ala inf.	
	β	1	.00		1.00	0.0	0	0.00	
	L _K	1.	150	1	.150	0.00	00	0.000	
	C ₁		_				1.000		
	Notación:	•							

C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

b: Coeficiente de pandeo L_κ: Longitud de pandeo (m)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+0.8·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

S_{c,0,d} : 0.00

kp/cm²

 $\sigma_{c0,d} = |N_{c,0,d}|/A$

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

0.000 **A**: cm² 108.00

A: Área de la sección transversal

f_{c,0,d} :

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

puente 4.60 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{0},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rel}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

 $\mathbf{b}_{\mathbf{c}}$: Factor asociado a la rectitud de las piezas

rel: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,k}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $\mathbf{f}_{c,o,k}$: Resistencia característica a compresión paralela a <u>la</u> fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 $\mathbf{L}_{\mathbf{k}}$: Longitud de pandeo de la barra

i: Radio de giro

k_{mod} : 0.55

 $\mathbf{f}_{c,0,k}: \underline{214.07} \text{ kp/cm}^2$ $\mathbf{g}_{M}: \underline{1.30}$

c_{c,y}: 0.98 **c**_{c,z}: 0.60

 $k_y : 0.58$ $k_z : 1.22$

b_c: 0.20 rel,y: 0.38 rel,z: 1.13

E₀,k : 75433.23 kp/cm²

 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm² \mathbf{f}_{v} : 22.1366.40

 $egin{array}{llll} m{L}_{k,y} & : & & & & & & & & & & & & \\ m{L}_{k,z} & : & & & & & & & & & & & \\ m{i}_y & : & & & & & & & & & & \\ m{i}_z & : & & & & & & & & & & \\ m{m} & & & & & & & & & & \\ m{m} & & & & & & & & & & \\ m{m} & & & & & & & & & \\ m{m} & & & & & & & & \\ m{m} & & & & & & & & \\ m{m} & & & & & & & & \\ m{m} & & & & & & & \\ m{m} & & & & & & & \\ m{m} & & & & & & & \\ m{m} & & & & \\ m{m} & & & & \\ \m{m} & \\ \m{m} & & \\ \m{m} &$

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,v,d}}}{f_{\text{m,v,d}}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \textbf{0.688} \hspace{0.2cm} \textbf{V}$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión: s _{m,d} : Tensión de cálculo a flexión, dada por:	S _{m,y,d} ⁺ :	71.24	kp/cm²
	S _{m,y,d} :	0.00	kp/cm²
$\sigma_{m,d} = M_d /W_{\mathsf{el}}$			
Donde:			
M₄: Momento flector de cálculo	M _{y,d} ⁺ :	0.231	t⋅m
	M _{y,d} :	0.000	t∙m
\mathbf{W}_{el} : Módulo resistente elástico de la sección transversal	$\mathbf{W}_{el,y}$:	324.00	cm ³
$\mathbf{f}_{\scriptscriptstylem,d}$: Resistencia de cálculo a flexión, dada por:	$\mathbf{f}_{m,y,d}^{+}$:	103.51	kp/cm²
	f _{m,y,d} :	94.10	kp/cm²
$\mathbf{f}_{m,d} = \mathbf{k}_{mod} \cdot \mathbf{k}_{h} \cdot \mathbf{f}_{m,k} / \gamma_{M}$			
Donde:			

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y $\mathbf{k_{mod}}^{+}$: 0.55 el contenido de humedad $\mathbf{k}_{\mathsf{mod}}$: 0.50

Donde:

Clase⁺ : Larga duración Clase de duración de la carga

Clase : Permanente Clase de servicio Clase: 3 **f**_{m,k}: Resistencia característica a flexión $\mathbf{f}_{\mathsf{m},\mathsf{k}}$: 244.65

k_h: Factor de altura, dado por: Para cantos (flexión) o anchos (tracción) de piezas

rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material g_M: 1.30

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

kp/cm²

k_h :

1.00

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \begin{array}{c} \bullet \\ \bullet \end{array} \hspace{0.2cm} \bullet \hspace{0.2cm} \end{array}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por:

ensión de cálculo a cortante, dada por:
$$\mathbf{t}_{\text{y,d}} : \underline{0.05} \text{ kp/cm}^2$$

$$\tau_{\text{d}} = \frac{3}{2} \cdot \frac{|V_{\text{d}}|}{A \cdot k}$$

Donde:

V₁: Cortante de cálculo $V_{y,d}$: 0.002 t A: Área de la sección transversal A: 108.00 cm² **k**_{cr}: Factor que tiene en cuenta la influencia de las fendas **k**_{cr}: 0.67 $\mathbf{f}_{v,d}$: 17.25 kp/cm²

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por:

$$f_{_{v,d}} = k_{_{mod}} \cdot f_{_{v,k}} \big/ \gamma_{_{M}}$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) 0.55 f_{vk}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.283}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N2, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 4.88 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V_d: Cortante de cálculo $V_{z,d}$: 0.235 t A: Área de la sección transversal A: 108.00 cm²

k_{cr}: Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material gм :

1.30

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.694 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.489 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}$: 71.24 kp/cm² $S_{m,z,d}$: 0.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{v,d}$: 0.231 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: 0.001 t·m $W_{el,y}$: 324.00 cm³

W_{el,z}: 108.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,y}$: 1.00 **k**_{h,z} : 1.20

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^{\!\!2} + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

$$\boldsymbol{s}_{\scriptscriptstyle{c,0,d}}\!\!:$$
 Tensión de cálculo a compresión paralela a la fibra, dada por:

$$\mathbf{S}_{c,0,d}$$
: 0.00 kp/cm²

$$\sigma_{c0,d} = \left|N_{c,0,d}\right| / A$$

Donde:

$\mathbf{N}_{c,0,d}$: Compresión axial	de cálculo para	lela a la fibra
A . A		

$$\mathbf{s}_{\scriptscriptstyle{\mathsf{m,d}}}$$
: Tensión de cálculo a flexión, dada por:

$$\mathbf{s}_{m,y,d}$$
 : 71.24 kp/cm² $\mathbf{s}_{m,z,d}$: 0.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_e$$

Donde:

$$\mathbf{f}_{c,0,d}$$
: Resistencia de cálculo a compresión paralela a la fibra, dada por:

$$\mathbf{f}_{c,0,d}$$
 : $\underline{108.00}$ cm³ kp/cm²

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$ Donde:

$$\mathbf{f}_{c,0,k}$$
: Resistencia característica a compresión paralela a la fibra $\mathbf{g}_{\mathbf{m}}$: Coeficiente parcial para las propiedades del material

$$\mathbf{f}_{m,d}$$
: Resistencia de cálculo a flexión, dada por:

$$\mathbf{f}_{m,y,d}$$
: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 124.32 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 4.60 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

f_{m,k}: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por: $\mathbf{k}_{h,y}$: __1.00 $k_{h,z}$: 1.20

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

c.: Factor de inestabilidad C_{c,y} :

 k_m : 0.70 0.98 C_{c,z}:

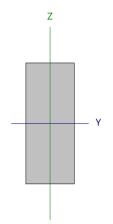
60.00 mm

1.30

0.60

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)


La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 4.60 m Fecha: 03/07/25

Barra N13/N12

Nud	los	Lana attend	Características mecánicas			as
Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N13	N12	0.600	40.00	333.33	53.33	157.44

- Notas:

 (1) Inercia respecto al eje indicado

 de inercia a torsión un (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	1.00	1.00	0.00	0.00	
L_{K}	0.600	0.600	0.000	0.000	
C ₁	-	-	1.0	00	

Notación:

- b: Coeficiente de pandeo
- L_κ: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h: 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h: 0.001 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

h: 0.001 🗸

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

 $S_{c,0,d}$: 0.10

kp/cm²

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

0.004

A: Área de la sección transversal

A : cm² 40.00

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

$$\mathbf{f}_{c,0,d}$$
: 90.57 kp/cm²

Donde:

puente 4.60 m Fecha: 03/07/25

 ${f k}_{mod}$: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{0},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rei}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

b_c: Factor asociado a la rectitud de las piezas

_{rel}: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,k}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $f_{\text{c,o,k}} .$ Resistencia característica a compresión paralela a la fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 $\mathbf{L}_{\mathbf{k}}$: Longitud de pandeo de la barra

i: Radio de giro

k_{mod} : 0.55

f_{c,0,k} : <u>214.07</u> kp/cm²

gм : _____1.30

 $\mathbf{c}_{c,y} : 0.99$ $\mathbf{c}_{c,z} : 0.77$

 $k_{y} : 0.57$ $k_{z} : 0.95$

b_c: 0.20

rel,y : 0.35 rel,z : 0.88

E_{0,k}: 75433.23 kp/cm²

 $\mathbf{f}_{c,Q,k}: 214.07 \text{ kp/cm}^2$

y: 20.78 z: 51.96

L_{k,z}: 600.00 mm **L**_{k,z}: 600.00 mm

 $\mathbf{i_y}$: <u>28.87</u> mm $\mathbf{i_z}$: <u>11.55</u> mm

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \textbf{0.511}$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

$\mathbf{s}_{\scriptscriptstyle{m},d}$: Tensión de cálculo a flexión, dada por:	$S_{m,y,d}^{}^{+}}$:	57.40	kp/cm²
	S _{m,y,d} :	0.00	kp/cm²
$\sigma_{m,d} = M_d /W_{el}$			

Donde:

M_d: Momento flector de cálculo 0.038 t∙m 0.000 t∙m Wel: Módulo resistente elástico de la sección transversal $\mathbf{W}_{\mathsf{el,y}}$: 66.67 cm³ $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por: $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: kp/cm² 112.25 kp/cm² $\mathbf{f}_{m,y,d}$: 102.04

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad \mathbf{k}_{mod}^+ : 0.55

Donde:

Clase de duración de la carga **Clase**⁺ : Larga duración

Clase de servicio Clase : <u>Permanente</u>
Clase : 3

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm² \mathbf{k}_h : Factor de altura, dado por: \mathbf{k}_h : 1.08

Para cantos (flexión) o anchos (tracción) de piezas

rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

sección en tracción h: 100.00 mm $g_M: Coeficiente parcial para las propiedades del material <math>g_M: 1.30$

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} 0.003} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.35 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

 $\mathbf{t}_{ t d}$: Tensión de cálculo a cortante, dada por: $\mathbf{t}_{ t v,d}$: 0.06 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{y,d} : \underline{0.001} t$ A: Área de la sección transversal $A : \underline{40.00} cm^2$

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}: \underline{17.25} \text{ kp/cm}^2$

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: $\underline{40.77}$ kp/cm²

g_M: Coeficiente parcial para las propiedades del material g_M : 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} 0.210} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{t}_{ t a}$: Tensión de cálculo a cortante, dada por: $\mathbf{t}_{ t z, d}$: __3.62_ kp/cm²

$$\tau_{d} = \frac{3}{2} \cdot \frac{\left|V_{d}\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{z,d}$: 0.065 t A: Área de la sección transversal A: 40.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: Resistencia característica a cortante $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: 40.77 kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : __1.30_

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.521 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.372 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 57.40 kp/cm² $S_{m,z,d}$: 1.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathbf{y},\mathbf{d}}$: 0.038 t·m $\mathbf{M}_{z,d}$: 0,001 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 66.67 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 26.67 cm³ $\mathbf{f}_{m,y,d}$: 112.25 kp/cm² $\mathbf{f}_{m,z,d}$: 134.56 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga

duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² **f**_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por: **k**_{h,y} : __1.08 **k**_{h,z} : 1.30

gm: Coeficiente parcial para las propiedades del material gм : 1.30 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo

flexión esviada y la falta de homogeneidad del material en la sección transversal $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

Donde

 $\mathbf{s}_{\scriptscriptstyle{\mathsf{c},\mathsf{0},\mathsf{d}}}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

$$S_{c,0,d}$$
: 0.10 kp/cm²

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

Donde:

 $\mathbf{N}_{\mathsf{c,o,d}}$: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d} : 0.004 t$ $A : 40.00 cm^2$

A: Área de la sección transversal $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: <u>57.40</u> kp/cm² $\mathbf{s}_{m,z,d}$: 1.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

M_{y,d} : 0.038 t⋅m

W_{el}: Módulo resistente elástico de la sección transversal

 $\mathbf{M}_{z,d}$: <u>0.001</u> t·m $\mathbf{W}_{el,y}$: <u>66.67</u> cm³

 $W_{el,z}$: 26.67 cm³

 $\mathbf{f}_{\mathsf{c},\mathsf{o},\mathsf{d}}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

f_{c,0,d} : <u>90.57</u> kp/cm²

 $\mathbf{f}_{c,0,d} = \mathbf{k}_{\text{mod}} \cdot \mathbf{f}_{c,0,k} / \gamma_{\text{M}}$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : <u>0.55</u> $\mathbf{f}_{c,0,k}$: <u>214.07</u> kp/cm²

 $\mathbf{f}_{c,0,k}$: Resistencia característica a compresión paralela a la fibra \mathbf{g}_{M} : Coeficiente parcial para las propiedades del material

gм : *1.30*

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: <u>112.25</u> kp/cm² $\mathbf{f}_{m,z,d}$: <u>134.56</u> kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 4.60 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55 $\mathbf{f}_{m,k}$: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm²

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = \min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

tracción **h** : <u>100.00</u> mm

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

tracción h: 40.00 mm g_M: Coeficiente parcial para las propiedades del material $g_M: 1.30$

g_M. Coefficiente parciai para las propiedades del material

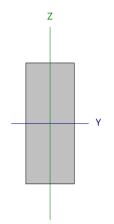
 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 \mathbf{c}_{c} : Factor de inestabilidad $\mathbf{c}_{\mathsf{c},\mathsf{y}}$: $\boxed{0.99}$ $\mathbf{c}_{\mathsf{c},\mathsf{z}}$: $\boxed{0.77}$

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

 k_m :


0.70

puente 4.60 m Fecha: 03/07/25

Barra N11/N13

Nuc	los	Longitud	C	Característic	as mecánic	as
Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N11	N13	0.600	40.00	333.33	53.33	157.44

- Notas:

 (1) Inercia respecto al eje indicado
 (2) inercia a torsión u
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	1.00	1.00	0.00	0.00	
L _K	0.600	0.600	0.000	0.000	
C ₁		-	1.0	00	

Notación:

- b: Coeficiente de pandeo
- L_κ: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h: 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h: 0.001 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

 $S_{c,0,d}$: 0.10

kp/cm²

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

0.004

A: Área de la sección transversal

A : cm² 40.00

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

 $\mathbf{f}_{c,0,d}$: kp/cm² 90.57

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

puente 4.60 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{0},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rel}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

b_c: Factor asociado a la rectitud de las piezas

_{rel}: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,k}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $f_{\text{c,o,k}} .$ Resistencia característica a compresión paralela a la fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 $\mathbf{L}_{\mathbf{k}}$: Longitud de pandeo de la barra

i: Radio de giro

 \mathbf{k}_{mod} : <u>0.55</u> $\mathbf{f}_{c,o,k}$: <u>214.07</u> kp/cm²

gм : _____1.30

c_{c,y}: 0.99 **c**_{c,z}: 0.77

k_z: 0.95

b_c: 0.20 rel,y: 0.35 rel,z: 0.88

y: 20.78 z: 51.96

 $egin{array}{lll} oldsymbol{\mathsf{L}}_{\mathsf{k},\mathsf{y}} & : & \underline{600.00} & \mathsf{mm} \\ oldsymbol{\mathsf{L}}_{\mathsf{k},\mathsf{z}} & : & \underline{600.00} & \mathsf{mm} \\ oldsymbol{\mathsf{i}}_{\mathsf{y}} & : & \underline{28.87} & \mathsf{mm} \end{array}$

i_z : <u>11.55</u> mm

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{v},\mathsf{d}}} \leq 1$$

h : ________

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}^{+}$: 57.40 kp/cm² $\mathbf{s}_{m,y,d}^{-}$: 0.00 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}^{+}$: 0.038 t·m $\mathbf{M}_{y,d}^{-}$: 0.000 t·m \mathbf{W}_{elv} : 66.67 cm³

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal $\mathbf{f}_{m.d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{W}_{\text{el,y}}$: 66.67 cm³ kp/cm² $\mathbf{f}_{\text{m,y,d}}$: 112.25 kp/cm² kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 $\mathbf{k}_{\mathsf{mod}}$: Factor de modificación para la duración de la carga y el contenido de humedad

 $\mathbf{k}_{\mathsf{mod}}^{\mathsf{+}} : 0.55$ $\mathbf{k}_{\mathsf{mod}}^{\mathsf{-}} : 0.50$

Donde:

Clase de duración de la carga

Clase : Larga duración
Clase : Permanente

k_h :

Clase de servicio

 $\boldsymbol{f}_{m,k} \text{:} \ \text{Resistencia característica a flexión}$

Clase: 3 kp/cm²

1.08

 \boldsymbol{k}_{h} : Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

$$k_h = min\{(150/h)^{0.2}; 1.3\}$$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

h: <u>100.00</u> mm g_M: <u>1.30</u>

gm: Coeficiente parcial para las propiedades del material

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 4.60 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} 0.003} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.35 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

 $\mathbf{t}_{ t d}$: Tensión de cálculo a cortante, dada por: $\mathbf{t}_{ t v,d}$: 0.06 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{y,d}: \underline{0.001} t$ A: Área de la sección transversal $A: \underline{40.00} cm^2$

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

f = k f /s

 $f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: $\underline{40.77}$ kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} 0.210} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 3.62 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{z,d}$: 0.065 t **A**: Área de la sección transversal A: 40.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

 $f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: Resistencia característica a cortante $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: 40.77 kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : __1.30_

puente 4.60 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.521 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.372 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 57.40 kp/cm² $S_{m,z,d}$: 1.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathbf{y},\mathbf{d}}$: 0.038 t·m $\mathbf{M}_{z,d}$: 0,001 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 66.67 cm³ **W**_{el,z}: 26.67 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 112.25 kp/cm² $\mathbf{f}_{m,z,d}$: 134.56 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

k_{h,y} : __1.08 **k**_{h,z} : 1.30

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 4.60 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

Donde

 $\mathbf{s}_{\text{c.o.d}}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

Donde:

 $\mathbf{N}_{\mathsf{c,o,d}}$: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d} : 0.004 t$ $A : 40.00 cm^2$

A: Área de la sección transversal $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: <u>57.40</u> kp/cm² $\mathbf{s}_{m,z,d}$: 1.95 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

M_{y,d} : 0.038 t⋅m

W_{el}: Módulo resistente elástico de la sección transversal

 $\mathbf{M}_{z,d}$: <u>0.001</u> t·m $\mathbf{W}_{el,y}$: <u>66.67</u> cm³

 $W_{el,z}$: 26.67 cm³

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

f_{c,0,d}: 90.57 kp/cm²

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : <u>0.55</u> $\mathbf{f}_{c,0,k}$: <u>214.07</u> kp/cm²

 $\mathbf{f}_{c,0,k}$: Resistencia característica a compresión paralela a la fibra \mathbf{g}_M : Coeficiente parcial para las propiedades del material

gм: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: <u>112.25</u> kp/cm² $\mathbf{f}_{m,z,d}$: <u>134.56</u> kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 4.60 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{f}_{m,k}$: Resistencia característica a flexión

k_h: Factor de altura, dado por:

 $egin{array}{lll} {\bf f}_{m,k} & : & \underline{244.65} & \text{kp/cm}^2 \\ {\bf k}_{h,y} & : & \underline{1.08} & \\ {\bf k}_{h,z} & : & \underline{1.30} & \end{array}$

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = \min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

Eie z

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

c_c: Factor de inestabilidad

h : _40.00 mm

0.77

h : 100.00 mm

gм : <u>1.30</u>

 $\mathbf{k}_{m} : 0.70$ $\mathbf{c}_{c,y} : 0.99$

C_{c,z}:

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

Fecha: 03/07/25

2.3.2.5. Comprobaciones E.L.U. (Resumido)

_					COMPR	OBACIONES	(CTE DB	SE-M)				
Barras	N _{t,0,d}	N _{c,0,d}	$M_{y,d}$	$M_{z,d}$	$V_{y,d}$	$V_{z,d}$	M _{x,d}	$M_{y,d}M_{z,d}$	$N_{t,0,d}M_{y,d}M_{z,d}$	$N_{c,0,d}M_{y,d}M_{z,d}$	$M_{x,d}V_{y,d}V_{z,d}$	Estado
N1/N11	N.P. ⁽¹⁾	η < 0.1	x: 1.15 m η = 68.8	N.P. ⁽²⁾	η = 0.3	x: 0 m η = 28.3	N.P. ⁽³⁾	x: 1.15 m η = 69.4	N.P. ⁽⁴⁾	x: 1.15 m η = 69.4	N.P. ⁽⁵⁾	CUMPLE h = 69.4
N11/N7	η < 0.1	N.P. ⁽⁶⁾	x: 1.15 m η = 91.8	N.P. ⁽²⁾	η = 0.2	x: 0 m η = 12.2	N.P. ⁽³⁾	x: 1.15 m η = 92.0	x: 1.15 m η = 92.0	N.P. ⁽⁷⁾	N.P. ⁽⁵⁾	CUMPLE h = 92.0
N7/N9	η < 0.1	N.P. ⁽⁶⁾	x: 0 m η = 91.8	N.P. ⁽²⁾	η = 0.2	x: 1.15 m η = 12.2	N.P. ⁽³⁾	x: 0 m η = 92.0	x: 0 m η = 92.0	N.P. ⁽⁷⁾	N.P. ⁽⁵⁾	CUMPLE h = 92.0
N9/N2	N.P. ⁽¹⁾	η < 0.1	x: 0 m η = 68.8	N.P. ⁽²⁾	η = 0.3	x: 1.15 m η = 28.3	N.P. ⁽³⁾	x: 0 m η = 69.4	N.P. ⁽⁴⁾	x: 0 m η = 69.4	N.P. ⁽⁵⁾	CUMPLE h = 69.4
N2/N6	N.P. ⁽¹⁾	η = 5.7	x: 0.6 m η = 17.4	N.P. ⁽²⁾	η = 2.1	x: 0 m η = 10.7	η = 2.1	x: 0.6 m η = 21.1	N.P. ⁽⁴⁾	x: 0.6 m η = 25.6	x: 0 m η = 12.8	CUMPLE h = 25.6
N6/N3	N.P. ⁽¹⁾	η = 5.7	x: 0 m η = 17.4	N.P. ⁽²⁾	η = 2.1	x: 0.6 m η = 10.7	η = 2.1	x: 0 m η = 21.1	N.P. ⁽⁴⁾	x: 0 m η = 25.6	x: 0.6 m η = 12.8	CUMPLE h = 25.6
N4/N12	N.P. ⁽¹⁾	η < 0.1	x: 1.15 m η = 68.8	N.P. ⁽²⁾	η = 0.3	x: 0 m η = 28.3	N.P. ⁽³⁾	x: 1.15 m η = 69.4	N.P. ⁽⁴⁾	x: 1.15 m η = 69.4	N.P. ⁽⁵⁾	CUMPLE h = 69.4
N12/N8	η < 0.1	N.P. ⁽⁶⁾	x: 1.15 m η = 91.8	N.P. ⁽²⁾	η = 0.2	x: 0 m η = 12.2	N.P. ⁽³⁾	x: 1.15 m η = 92.0	x: 1.15 m η = 92.0	N.P. ⁽⁷⁾	N.P. ⁽⁵⁾	CUMPLE h = 92.0
N8/N10	η < 0.1	N.P. ⁽⁶⁾	x: 0 m η = 91.8	N.P. ⁽²⁾	η = 0.2	x: 1.15 m η = 12.2	N.P. ⁽³⁾	x: 0 m η = 92.0	x: 0 m η = 92.0	N.P. ⁽⁷⁾	N.P. ⁽⁵⁾	CUMPLE h = 92.0
N10/N3	N.P. ⁽¹⁾	η < 0.1	x: 0 m η = 68.8	N.P. ⁽²⁾	η = 0.3	x: 1.15 m η = 28.3	N.P. ⁽³⁾	x: 0 m η = 69.4	N.P. ⁽⁴⁾	x: 0 m η = 69.4	N.P. ⁽⁵⁾	CUMPLE h = 69.4
N1/N5	N.P. ⁽¹⁾	η = 5.7	x: 0.6 m η = 17.4	N.P. ⁽²⁾	η = 2.1	x: 0 m η = 10.7	η = 2.1	x: 0.6 m η = 21.1	N.P. ⁽⁴⁾	x: 0.6 m η = 25.6	x: 0 m η = 12.8	CUMPLE h = 25.6
N5/N4	N.P. ⁽¹⁾	η = 5.7	x: 0 m η = 17.4	N.P. ⁽²⁾	η = 2.1	x: 0.6 m η = 10.7	η = 2.1	x: 0 m η = 21.1	N.P. ⁽⁴⁾	x: 0 m η = 25.6	x: 0.6 m η = 12.8	CUMPLE h = 25.6
N7/N14	η = 0.1	N.P. ⁽⁶⁾	x: 0.6 m η = 51.5	N.P. ⁽²⁾	N.P. ⁽⁸⁾	x: 0 m η = 21.0	N.P. ⁽³⁾	N.P. ⁽⁹⁾	x: 0.6 m η = 51.6	N.P. ⁽⁷⁾	N.P. ⁽⁵⁾	CUMPLE h = 51.6
N14/N8	η = 0.1	N.P. ⁽⁶⁾	x: 0 m η = 51.5	N.P. ⁽²⁾	N.P. ⁽⁸⁾	x: 0.6 m η = 21.0	N.P. ⁽³⁾	N.P. ⁽⁹⁾	x: 0 m η = 51.6	N.P. ⁽⁷⁾	N.P. ⁽⁵⁾	CUMPLE h = 51.6
N9/N15	N.P. ⁽¹⁾	η = 0.1	x: 0.6 m η = 51.1	N.P. ⁽²⁾	η = 0.3	x: 0 m η = 21.0	N.P. ⁽³⁾	x: 0.6 m η = 52.1	N.P. ⁽⁴⁾	x: 0.6 m η = 52.3	N.P. ⁽⁵⁾	CUMPLE h = 52.3
N15/N10	N.P. ⁽¹⁾	η = 0.1	x: 0 m η = 51.1	N.P. ⁽²⁾	η = 0.3	x: 0.6 m η = 21.0	N.P. ⁽³⁾	x: 0 m η = 52.1	N.P. ⁽⁴⁾	x: 0 m η = 52.3	N.P. ⁽⁵⁾	CUMPLE h = 52.3
N11/N13	N.P. ⁽¹⁾	η = 0.1	x: 0.6 m η = 51.1	N.P. ⁽²⁾	η = 0.3	x: 0 m η = 21.0	N.P. ⁽³⁾	x: 0.6 m η = 52.1	N.P. ⁽⁴⁾	x: 0.6 m η = 52.3	N.P. ⁽⁵⁾	CUMPLE h = 52.3
N13/N12	N.P. ⁽¹⁾	η = 0.1	x: 0 m η = 51.1	N.P. ⁽²⁾	η = 0.3	x: 0.6 m η = 21.0	N.P. ⁽³⁾	x: 0 m η = 52.1	N.P. ⁽⁴⁾	x: 0 m η = 52.3	N.P. ⁽⁵⁾	CUMPLE h = 52.3
N15/N6	N.P. ⁽¹⁾	η = 1.2	x: 0.575 m η = 23.7	N.P. ⁽²⁾	N.P. ⁽⁸⁾	x: 0 m η = 20.6	N.P. ⁽³⁾	N.P. ⁽⁹⁾	N.P. ⁽⁴⁾	x: 0.575 m η = 24.1	N.P. ⁽⁵⁾	CUMPLE h = 24.1
N14/N15	N.P. ⁽¹⁾	η = 1.3	x: 0.575 m η = 23.5	N.P. ⁽²⁾	N.P. ⁽⁸⁾	x: 0 m η = 20.6	N.P. ⁽³⁾	N.P. ⁽⁹⁾	N.P. ⁽⁴⁾	x: 0.575 m η = 24.0	N.P. ⁽⁵⁾	CUMPLE h = 24.0
N13/N14	N.P. ⁽¹⁾	η = 1.3	x: 0.575 m η = 23.5	N.P. ⁽²⁾	N.P. ⁽⁸⁾	x: 0 m η = 20.6	N.P. ⁽³⁾	N.P. ⁽⁹⁾	N.P. ⁽⁴⁾	x: 0.575 m η = 24.0	N.P. ⁽⁵⁾	CUMPLE h = 24.0
N5/N13	N.P. ⁽¹⁾	η = 1.2	x: 0.575 m η = 23.7	N.P. ⁽²⁾	N.P. ⁽⁸⁾	x: 0 m η = 20.6	N.P. ⁽³⁾	N.P. ⁽⁹⁾	N.P. ⁽⁴⁾	x: 0.575 m η = 24.1	N.P. ⁽⁵⁾	CUMPLE h = 24.1

Notación:

- ación: $N_{c,a,i}$: Resistencia a tracción uniforme paralela a la fibra $N_{c,a,i}$: Resistencia a compresión uniforme paralela a la fibra $M_{\mu,a}$: Resistencia a flexión en el eje y $M_{z,a}$: Resistencia a flexión en el eje z $V_{\mu,a}$: Resistencia a cortante en el eje y $V_{z,a}$: Resistencia a cortante en el eje z

- $V_{s,i}$: Resistencia a cortante en el eje z $M_{s,i}$: Resistencia a torsión $M_{r,i}M_{s,i}$: Resistencia a flexión esviada $N_{t,i,k}M_{r,i}M_{s,i}$: Resistencia a flexión y tracción axial combinadas $N_{t,i,k}M_{r,i}M_{s,i}$: Resistencia a flexión y compresión axial combinadas $M_{s,k}V_{r,k}V_{s,i}$: Resistencia a flexión y compresión axial combinadas $N_{s,k}V_{r,k}V_{s,i}$: Resistencia a cortante y torsor combinados x: Distancia al origen de la barra $N_{s,k}V_{r,k}V_{s,i}$: Resistencia a cortante y torsor combinados $N_{s,k}V_{r,k}V_{s,i}$: Resistencia a cortante y torsor combinados $N_{s,k}V_{r,k}V_{s,i}V_{s,i}V_{s,i}$: Resistencia $N_{s,k}V_{r,k}V_{s,i$

Comprobaciones que no proceden (N.P.):

- mprobaciones que no proceden (N.P.):

 (ii) La comprobación no procede, ya que no hay axil de tracción.
 (ii) La comprobación no procede, ya que no hay momento flector.
 (ii) La comprobación no procede, ya que no hay momento torsor.
 (iii) La comprobación no procede, ya que no hay momento torsor.
 (iii) La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.
 (iii) La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.
 (iii) La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.
 (iii) La comprobación no procede, ya que no hay esfuerzo cortante.
 (iii) La comprobación no procede, ya que no hay esfuerzo cortante.
 (iii) La comprobación no procede, ya que no hay flexión esviada para ninguna combinación.

ÍNDICE

1.	DATO	OS DE OBRA	2
	1.1.	Normas consideradas	2
	1.2.	Estados límite	2
		1.2.1. Situaciones de proyecto	2
		1.2.2. Combinaciones	
2.		UCTURA	
	2.1.	Geometría	
		2.1.1. Nudos	
		2.1.2. Barras	
	2.2.	Cargas	7
		2.2.1. Barras	
	2.3.	Resultados	9
		2.3.1. Nudos	9
		2.3.2 Barras	1.

puente 7 a 6 m Fecha: 03/07/25

1. DATOS DE OBRA

1.1. Normas consideradas

Madera: CTE DB SE-M

Categoría de uso: C. Zonas de acceso al público

1.2. Estados límite

E.L.U. de rotura. Madera	CTE Cota de nieve: Altitud inferior o igual a 1000 m
Desplazamientos	Acciones características

1.2.1. Situaciones de proyecto

Para las distintas situaciones de proyecto, las combinaciones de acciones se definirán de acuerdo con los siguientes criterios:

- Con coeficientes de combinación

$$\sum_{j\geq 1} \gamma_{Gj} G_{kj} + \gamma_P P_k + \gamma_{O1} \Psi_{P1} Q_{k1} + \sum_{j\geq 1} \gamma_{Oj} \Psi_{ai} Q_{ki}$$

- Sin coeficientes de combinación

$$\sum_{j\geq 1} \gamma_{Gj} G_{kj} + \gamma_P P_k + \sum_{i\geq 1} \gamma_{Qi} Q_{ki}$$

- Donde:

G_k Acción permanente

P_k Acción de pretensado

Q_k Acción variable

 γ_G Coeficiente parcial de seguridad de las acciones permanentes

γ_P Coeficiente parcial de seguridad de la acción de pretensado

 $\gamma_{0,1}$ Coeficiente parcial de seguridad de la acción variable principal

 $\gamma_{Q,i}$ Coeficiente parcial de seguridad de las acciones variables de acompañamiento

 $\psi_{p,1}$ Coeficiente de combinación de la acción variable principal

 $\psi_{a,i}$ Coeficiente de combinación de las acciones variables de acompañamiento

Para cada situación de proyecto y estado límite los coeficientes a utilizar serán:

E.L.U. de rotura. Madera: CTE DB SE-M

puente 7 a 6 m Fecha: 03/07/25

Persistente o transitoria								
	Coeficientes par	ciales de seguridad (γ)	Coeficientes	s de combinación (ψ)				
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)				
Carga permanente (G)	0.800	1.350	-	-				
Sobrecarga (Q)	0.000	1.500	1.000	0.700				

Desplazamientos

Característica							
	Coeficientes parciales de seguridad (γ)		Coeficientes	s de combinación (ψ)			
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)			
Carga permanente (G)	1.000	1.000	-	-			
Sobrecarga (Q)	0.000	1.000	1.000	1.000			

1.2.2. Combinaciones

- Nombres de las hipótesis

PP Peso propio CM 1 CM 1

Q1 Q1

• E.L.U. de rotura. Madera

Comb.	PP	CM 1	Q 1
1	0.800	0.800	
2	1.350	0.800	
3	0.800	1.350	
4	1.350	1.350	
5	0.800	0.800	1.500
6	1.350	0.800	1.500
7	0.800	1.350	1.500
8	1.350	1.350	1.500

Desplazamientos

Comb.	PP	CM 1	Q 1		
1	1.000	1.000			
2	1.000	1.000	1.000		

2. ESTRUCTURA

2.1. Geometría

puente 7 a 6 m Fecha: 03/07/25

2.1.1. Nudos

Referencias:

 Δ_x , Δ_y , Δ_z : Desplazamientos prescritos en ejes globales.

 θ_x , θ_y , θ_z : Giros prescritos en ejes globales.

Cada grado de libertad se marca con 'X' si está coaccionado y, en caso contrario, con '-'.

				Nu	dos	5				
	Co	ordena	das	Vin	cula	ació	n e	xter	ior	
Referencia	(m)	Y (m)	Z (m)	Δ_{x}	Δ_{y}	Δ_{z}	θ_{x}	θ_{y}	θ_z	Vinculación interior
N1	0.000	0.000	0.000	Х	Х	Х	-	-	-	Empotrado
N2	0.000	7.000	0.000	Х	Х	Х	_	_	_	Empotrado
N3	1.200	7.000	0.000	Х	Х	Х	-	_	_	Empotrado
N4	1.200	0.000	0.000	Х	Х	Х	-	-	-	Empotrado
N5	0.600	0.000	0.000	-	-	-	-	-	-	Articulado
N6	0.600	7.000	0.000	-	-	-	-	_	-	Articulado
N7	0.000	3.500	0.000	-	-	-	-	-	-	Articulado
N8	1.200	3.500	0.000	-	-	-	-	-	-	Articulado
N9	0.000	5.250	0.000	-	-	-	-	_	-	Articulado
N10	1.200	5.250	0.000	-	-	-	-	-	-	Articulado
N11	0.000	1.750	0.000	-	-	-	-	-	-	Articulado
N12	1.200	1.750	0.000	-	-	-	-	-	-	Articulado
N13	0.600	1.750	0.000	-	-	-	-	-	-	Articulado
N14	0.600	3.500	0.000	-	-	-	-	-	-	Articulado
N15	0.600	5.250	0.000	-	-	-	-	-	-	Articulado

2.1.2. Barras

2.1.2.1. Materiales utilizados

Materiales utilizados										
M	aterial	Е		G	$lpha_{\cdot t}$	γ				
Tipo	Designación	(kp/cm ²)	V	(kp/cm ²)	(m/m°C)	(t/m^3)				
Madera	C24	112130.5	-	7033.6	0.000005	0.420				

Notación:

E: Módulo de elasticidad

n: Módulo de Poisson

G: Módulo de cortadura a.: Coeficiente de dilatación

g: Peso específico

puente 7 a 6 m Fecha: 03/07/25

2.1.2.2. Descripción

				Descripción					
М	aterial	Barra	Pieza	Doug!!/Courie)	Longitud	0	0	Lb _{Sup.}	Lb _{Inf.}
Tipo	Designación	(Ni/Nf)	(Ni/Nf)	Perfil(Serie)	(m)	β_{xy}	β_{xz}	(m)	(m)
Madera	C24	N1/N11	N1/N2	GL-200x120 (Laminada b120)	1.750	1.00	1.00	-	-
		N11/N7	N1/N2	GL-200x120 (Laminada b120)	1.750	1.00	1.00	-	-
		N7/N9	N1/N2	GL-200x120 (Laminada b120)	1.750	1.00	1.00	-	-
		N9/N2	N1/N2	GL-200x120 (Laminada b120)	1.750	1.00	1.00	-	-
		N2/N6	N2/N3	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N6/N3	N2/N3	3 S-100x40 (Maciza h100) 0.600 1.00 1.00		1.00	-	-	
		N4/N12	N4/N3	D120)		1.00	-	-	
		N12/N8	N4/N3	GL-200x120 (Laminada b120)	1.750	1.00	1.00	-	-
		N8/N10	N4/N3	GL-200x120 (Laminada b120)	1.750	1.00	1.00	-	-
		N10/N3	N4/N3	GL-200x120 (Laminada b120)	1.750	1.00	1.00	_	-
		N1/N5	N1/N4	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N5/N4	N1/N4	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N7/N14	N7/N8	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N14/N8	N7/N8	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N9/N15	N9/N10	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N15/N10	N9/N10	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N11/N13	N11/N12	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N13/N12	N11/N12	S-100x40 (Maciza h100)	0.600	1.00	1.00	-	-
		N4/N11	N4/N11	S-100x40 (Maciza h100)	2.122	1.00	1.00	-	-
		N11/N8	N11/N8	S-100x40 (Maciza h100)	2.122	1.00	1.00	-	-
		N8/N9	N8/N9	S-100x40 (Maciza h100)	2.122	1.00	1.00	-	-
		N9/N3	N9/N3	S-100x40 (Maciza h100)	2.122	1.00	1.00	-	-
	N13/N14 N13		N13/N14	S-100x40 (Maciza h100)	1.750	1.00	1.00	-	-
		N14/N15	N14/N15	S-100x40 (Maciza h100)	1.750	1.00	1.00	-	-
		N15/N6	N15/N6	S-100x40 (Maciza h100)	1.750	1.00	1.00	-	-
		N5/N13	N5/N13	S-100x40 (Maciza h100)	1.750	1.00	1.00	-	_

Notación:

Ni: Nudo inicial Nf: Nudo final

b_{xy}: Coeficiente de pandeo en el plano 'XY' b_{xz}: Coeficiente de pandeo en el plano 'XZ' Lb_{sup}.: Separación entre arriostramientos del ala superior Lb_{int}.: Separación entre arriostramientos del ala inferior

2.1.2.3. Características mecánicas

	Tipos de pieza								
Ref.	Piezas								
1	N1/N2 y N4/N3								
	N2/N3, N1/N4, N7/N8, N9/N10, N11/N12, N4/N11, N11/N8, N8/N9, N9/N3, N13/N14, N14/N15, N15/N6 y N5/N13								

puente 7 a 6 m Fecha: 03/07/25

	Características mecánicas												
Material		Ref.	Descripción	Α	Avy	Avz	Iyy	Izz	It				
Tipo	Designación	Kei.	Descripcion	(cm²)	(cm²)	(cm²)	(cm4)	(cm4)	(cm4)				
Madera	C24	1	GL-200x120, (Laminada b120)	240.00	200.00	200.00	8000.00	2880.00	7153.92				
		2	S-100x40, (Maciza h100)	40.00	33.33	33.33	333.33	53.33	157.44				
A: Áre Avy: Á Avz: Á Iyy: Ir Izz: In	rea de cortante de nercia de la sección	e la sec e la sec n alrede	al ción según el eje local 'Y' ción según el eje local 'Z' dor del eje local 'Y' dor del eje local 'Z'										

Las características mecánicas de las piezas corresponden a la sección en el punto medio de las mismas.

2.1.2.4. Tabla de medición

			Tabla de medición			
M Tipo	aterial Designación	Pieza (Ni/Nf)	Perfil(Serie)	Longitud (m)	Volumen (m³)	Peso (kg)
		• • •	CL 200v120 (Laminada h120)	` '	` ,	
Madera	C24	N1/N2	GL-200x120 (Laminada b120)	7.000	0.168	70.56
		N2/N3	S-100x40 (Maciza h100)	1.200	0.005	2.02
		N4/N3	GL-200x120 (Laminada b120)	7.000	0.168	70.56
		N1/N4	S-100x40 (Maciza h100) 1.200 0.		0.005	2.02
		N7/N8	S-100x40 (Maciza h100)	1.200	0.005	2.02
		N9/N10	S-100x40 (Maciza h100)	1.200	0.005	2.02
		N11/N12	S-100x40 (Maciza h100)	1.200	0.005	2.02
		N4/N11	S-100x40 (Maciza h100)	2.122	0.008	3.56
		N11/N8	S-100x40 (Maciza h100)	2.122	0.008	3.56
		N8/N9	S-100x40 (Maciza h100)	2.122	0.008	3.56
		N9/N3	S-100x40 (Maciza h100)	2.122	0.008	3.56
		N13/N14	S-100x40 (Maciza h100)	1.750	0.007	2.94
		N14/N15	S-100x40 (Maciza h100)	1.750	0.007	2.94
		N15/N6	S-100x40 (Maciza h100)	1.750	0.007	2.94
		N5/N13	S-100x40 (Maciza h100)	1.750	0.007	2.94
	udo inicial					

Nf: Nudo final

2.1.2.5. Resumen de medición

				Resum	en de mo	edición						
M	aterial				Longitud		Volumen			Peso		
Tipo	Designación	Serie	Perfil	Perfil (m)	Serie (m)	Material (m)	Perfil (m³)	Serie (m³)	Material (m³)	Perfil (kg)	Serie (kg)	Material (kg)
			GL-200x120	14.000			0.336			141.12		
		Laminada b120			14.000			0.336			141.12	
			S-100x40	21.488			0.086			36.10		
		Maciza h100			21.488			0.086			36.10	
Madera	C24					35.488			0.422			177.22

2.1.2.6. Medición de superficies

Madera: Medición de las superficies a pintar											
Serie	Perfil	Superficie unitaria (m²/m)	-								
Laminada b120	GL-200x120	0.640	14.000	8.960							
Maciza h100	S-100x40	0.280	21.488	6.017							

puente 7 a 6 m Fecha: 03/07/25

Made	Madera: Medición de las superficies a pintar										
Serie	Perfil	Superficie unitaria (m²/m)	Longitud (m)	Superficie (m²)							
			Total	14.977							

2.2. Cargas

2.2.1. Barras

Referencias:

'P1', 'P2':

- Cargas puntuales, uniformes, en faja y momentos puntuales: 'P1' es el valor de la carga. 'P2' no se utiliza.
- Cargas trapeciales: 'P1' es el valor de la carga en el punto donde comienza (L1) y 'P2' es el valor de la carga en el punto donde termina (L2).
- Cargas triangulares: 'P1' es el valor máximo de la carga. 'P2' no se utiliza.
- Incrementos de temperatura: 'P1' y 'P2' son los valores de la temperatura en las caras exteriores o paramentos de la pieza. La orientación de la variación del incremento de temperatura sobre la sección transversal dependerá de la dirección seleccionada.

'L1', 'L2':

- Cargas y momentos puntuales: 'L1' es la distancia entre el nudo inicial de la barra y la posición donde se aplica la carga. 'L2' no se utiliza.
- Cargas trapeciales, en faja, y triangulares: 'L1' es la distancia entre el nudo inicial de la barra y la posición donde comienza la carga, 'L2' es la distancia entre el nudo inicial de la barra y la posición donde termina la carga.

Unidades:

- Cargas puntuales: t
- Momentos puntuales: t·m.
- Cargas uniformes, en faja, triangulares y trapeciales: t/m.
- Incrementos de temperatura: °C.

			Carga	s en b	arras					
			Valo	res	Posi	ción		Direc	ción	
Barra	Hipótesis	Tipo	P1	P2	L1 (m)	L2 (m)	Ejes	X	Y	Z
N1/N11	Peso propio	Uniforme	0.010	-	-	1	Globales	0.000	0.000	-1.000
N1/N11	CM 1	Faja	0.006	-	0.000	0.875	Globales	0.000	0.000	-1.000
N1/N11	CM 1	Triangular Izq.	0.006	-	0.875	1.750	Globales	0.000	0.000	-1.000
N1/N11	Q 1	Faja	0.030	-	0.000	0.875	Globales	0.000	0.000	-1.000
N1/N11	Q 1	Triangular Izq.	0.030	-	0.875	1.750	Globales	0.000	0.000	-1.000
N11/N7	Peso propio	Uniforme	0.010	-	-	-	Globales	0.000	0.000	-1.000
N11/N7	CM 1	Triangular Der.	0.005	-	0.000	0.750	Globales	0.000	0.000	-1.000
N11/N7	CM 1	Faja	0.006	-	0.750	0.875	Globales	0.000	0.000	-1.000
N11/N7	CM 1	Faja	0.006	-	0.875	1.750	Globales	0.000	0.000	-1.000
N11/N7	Q 1	Triangular Der.	0.026	-	0.000	0.750	Globales	0.000	0.000	-1.000
N11/N7	Q 1	Faja	0.028	-	0.750	0.875	Globales	0.000	0.000	-1.000
N11/N7	Q 1	Faja	0.030	-	0.875	1.750	Globales	0.000	0.000	-1.000
N7/N9	Peso propio	Uniforme	0.010	-	-	-	Globales	0.000	0.000	-1.000
N7/N9	CM 1	Faja	0.006	-	0.000	0.875	Globales	0.000	0.000	-1.000
N7/N9	CM 1	Triangular Izq.	0.006	-	0.875	1.750	Globales	0.000	0.000	-1.000
N7/N9	Q 1	Faja	0.030	-	0.000	0.875	Globales	0.000	0.000	-1.000
N7/N9	Q 1	Triangular Izq.	0.030	-	0.875	1.750	Globales	0.000	0.000	-1.000
N9/N2	Peso propio	Uniforme	0.010	-	-	-	Globales	0.000	0.000	-1.000

puente 7 a 6 m Fecha: 03/07/25

			Carga	s en b	arras					
			Valo			ción		Direc	rión	
Barra	Hipótesis	Tipo	P1	P2	L1 (m)	L2 (m)	Ejes	X	Y	Z
N9/N2	CM 1	Triangular Der.	0.005	-	0.000	0.750	Globales	0.000	0.000	-1.000
N9/N2	CM 1	Faja	0.006	-	0.750	0.875	Globales	0.000	0.000	-1.000
N9/N2	CM 1	Faja	0.006	-	0.875	1.750	Globales	0.000	0.000	-1.000
N9/N2	Q 1	Triangular Der.	0.026	-	0.000	0.750	Globales	0.000	0.000	-1.000
N9/N2	Q 1	Faja	0.028	-	0.750	0.875	Globales	0.000	0.000	-1.000
N9/N2	Q 1	Faja	0.030	-	0.875	1.750	Globales	0.000	0.000	-1.000
N2/N6	Peso propio	Uniforme	0.002	-	-	-	Globales	0.000	0.000	-1.000
N6/N3	Peso propio	Uniforme	0.002	-	-	-	Globales	0.000	0.000	-1.000
N4/N12	Peso propio	Uniforme	0.010	-	-	-	Globales	0.000	0.000	-1.000
N4/N12	CM 1	Triangular Der.	0.005	-	0.000	0.750	Globales	0.000	0.000	-1.000
N4/N12	CM 1	Faja	0.006	-	0.750	0.875	Globales	0.000	0.000	-1.000
N4/N12	CM 1	Faja	0.006	-	0.875	1.750	Globales	0.000	0.000	-1.000
N4/N12	Q 1	Triangular Der.	0.026	-	0.000	0.750	Globales	0.000	0.000	-1.000
N4/N12	Q 1	Faja	0.028	-	0.750	0.875	Globales	0.000	0.000	-1.000
N4/N12	Q 1	Faja	0.030	-	0.875	1.750	Globales	0.000	0.000	-1.000
N12/N8	Peso propio	Uniforme	0.010	-	_	-	Globales	0.000	0.000	-1.000
N12/N8	CM 1	Faja	0.006	-	0.000	0.875	Globales	0.000	0.000	-1.000
N12/N8	CM 1	Triangular Izq.	0.006	-	0.875	1.750	Globales	0.000	0.000	-1.000
N12/N8	Q 1	Faja	0.030	-	0.000	0.875	Globales	0.000	0.000	-1.000
N12/N8	Q 1	Triangular Izq.	0.030	-	0.875	1.750	Globales	0.000	0.000	-1.000
N8/N10	Peso propio		0.010	-	_	-	Globales	0.000	0.000	-1.000
N8/N10	CM 1	Triangular Der.	0.005	-	0.000	0.750	Globales	0.000	0.000	-1.000
N8/N10	CM 1	Faja	0.006	-	0.750	0.875	Globales	0.000	0.000	-1.000
N8/N10	CM 1	Faja	0.006	-	0.875	1.750	Globales	0.000	0.000	-1.000
N8/N10	Q 1	Triangular Der.	0.026	-	0.000	0.750	Globales	0.000	0.000	-1.000
N8/N10	Q 1	Faja	0.028	-	0.750	0.875	Globales	0.000	0.000	-1.000
N8/N10	Q 1	Faja	0.030	-	0.875	1.750	Globales	0.000	0.000	-1.000
N10/N3	Peso propio	_	0.010	-	_	_	Globales	0.000	0.000	-1.000
N10/N3	CM 1	Faja	0.006	-	0.000	0.875	Globales			
N10/N3	CM 1	Triangular Izq.	0.006	-	0.875	1.750	Globales	0.000	0.000	
N10/N3	Q 1	Faja	0.030	_	0.000	0.875	Globales			-1.000
N10/N3	Q 1	Triangular Izq.	0.030	_	0.875	1.750	Globales			-1.000
N1/N5	Peso propio		0.002	_	_	_	Globales			
N5/N4	Peso propio		0.002	_	_	_	Globales			
N7/N14	Peso propio		0.002	_	_	_	Globales			-1.000
N14/N8	Peso propio		0.002	_	_	_	Globales			
N9/N15	Peso propio		0.002	_	_	_	Globales			
N15/N10	Peso propio		0.002	_	_	_	Globales			-1.000
N11/N13	Peso propio	Uniforme	0.002	_	_	_	Globales			-1.000
N13/N12	Peso propio		0.002	_	_	_	Globales			
N4/N11	Peso propio		0.002	_	_	_	Globales			
N4/N11	CM 1	Uniforme	0.002	_	_	_	Globales			-1.000
N4/N11 N4/N11	Q 1	Uniforme	0.003	_	_	_	Globales			
N11/N8	Peso propio		0.023	_	_	_	Globales			
N11/N8	CM 1	Uniforme	0.002		_	_	Globales			
INTT/INQ	CIM I	ominorme	0.005	-	_	_	Gionales	0.000	0.000	-1.000

puente 7 a 6 m Fecha: 03/07/25

			Carga	s en b	arras					
			Valo	ores	Posi	ción		Direc	ción	
Barra	Hipótesis	Tipo	P1	P2	L1 (m)	L2 (m)	Ejes	Х	Y	Z
N11/N8	Q 1	Uniforme	0.025	-	-	-	Globales	0.000	0.000	-1.000
N8/N9	Peso propio		0.002	-	-	-	Globales			-1.000
N8/N9	CM 1	Uniforme	0.005	-	-	-	Globales			-1.000
N8/N9	Q 1	Uniforme	0.025	-	-	-	Globales			-1.000
N9/N3	Peso propio		0.002	-	-	-	Globales			-1.000
N9/N3	CM 1	Uniforme	0.005	-	-	-	Globales			-1.000
N9/N3	Q 1	Uniforme	0.025	-	-	-	Globales			-1.000
N13/N14			0.002	-	-	-	Globales			-1.000
N13/N14	1	Trapecial	0.013	0.009	0.000		Globales			-1.000
N13/N14	1	Faja	0.008	-	0.500	0.750	Globales			-1.000
N13/N14		Faja	0.007	-	0.750	1.000	Globales			-1.000
N13/N14	1	Trapecial	0.007		1.000	1.750	Globales			-1.000
N13/N14	_	Trapecial	0.061		0.000		Globales			-1.000
N13/N14	"	Faja	0.039	-	0.500	0.750	Globales			-1.000
N13/N14	-	Faja	0.032	-	0.750	1.000	Globales			-1.000
N13/N14	-	Trapecial	0.035	0.061	1.000	1.750	Globales			-1.000
N14/N15			0.002	-	-	-	Globales			-1.000
N14/N15		Trapecial	0.013			0.500				-1.000
N14/N15		Faja	0.008	-	0.500	0.750	Globales			-1.000
N14/N15	1	Faja	0.007	-	0.750	1.000	Globales			-1.000
N14/N15		Trapecial	0.007		1.000	1.750	Globales			-1.000
N14/N15	-	Trapecial	0.061		0.000	0.500	Globales			-1.000
N14/N15	Q 1	Faja	0.039	-	0.500	0.750	Globales			-1.000
N14/N15	Q 1	Faja	0.032	-	0.750	1.000	Globales			-1.000
N14/N15	_	Trapecial	0.035	0.061	1.000	1.750	Globales			-1.000
N15/N6	Peso propio		0.002		-	0.500	Globales			-1.000
N15/N6	CM 1	Trapecial	0.013			0.750	Globales			-1.000
N15/N6	CM 1	Faja		-			Globales Globales	l		l
N15/N6	CM 1	Faja	0.007		0.750 1.000					
N15/N6 N15/N6	CM 1	Trapecial	0.007		0.000		Globales Globales			
N15/N6	Q 1	Trapecial Faja	0.039	-	0.500		Globales			-1.000
N15/N6	Q 1	_			0.750	1.000	Globales			
N15/N6	Q 1 Q 1	Faja	0.032	0.061	1.000	1.750	Globales			1.000
N5/N13	Peso propio	Trapecial Uniforme	0.033	0.061	1.000	-	Globales			-1.000 -1.000
N5/N13	CM 1	Trapecial	0.002	0.009	0.000		Globales			-1.000
N5/N13	CM 1	-	0.013	0.009	0.500		Globales			-1.000
N5/N13	CM 1	Faja Faja	0.008	_	0.750	1.000	Globales			-1.000
N5/N13	CM 1	Trapecial	0.007		1.000	1.750	Globales			
N5/N13	Q 1	Trapecial	0.061		0.000		Globales			-1.000
N5/N13	Q 1 Q 1	Faja	0.039	-	0.500		Globales			-1.000
N5/N13	Q 1	Faja	0.039	_	0.750	1.000	Globales			
N5/N13	_	Trapecial	0.032		1.000		Globales			-1.000
IND/INT2	Q 1	i i aheciai	0.033	0.001	1.000	1./30	Gionales	0.000	0.000	-1.000

2.3. Resultados

puente 7 a 6 m Fecha: 03/07/25

2.3.1. Nudos

2.3.1.1. Desplazamientos

Referencias:

Dx, Dy, Dz: Desplazamientos de los nudos en ejes globales.

Gx, Gy, Gz: Giros de los nudos en ejes globales.

2.3.1.1.1. Hipótesis

Desplazamientos de los nudos, por hipótesis												
			Despla	zamiento	s en ejes	globales						
Referencia	Descripción	Dx (mm)	Dy (mm)	Dz (mm)	Gx (mRad)	Gy (mRad)	Gz (mRad)					
N1	Peso propio	0.000	0.000	0.000	-1.997	0.016	-0.022					
	CM 1	0.000	0.000	0.000	-1.959	0.041	-0.053					
	Q 1	0.000	0.000	0.000	-9.424	0.197	-0.253					
N2	Peso propio	0.000	0.000	0.000	1.997	0.016	0.022					
	CM 1	0.000	0.000	0.000	1.959	0.041	0.053					
	Q 1	0.000	0.000	0.000	9.424	0.197	0.253					
N3	Peso propio	0.000	0.000	0.000	1.943	-0.020	0.023					
	CM 1	0.000	0.000	0.000	1.919	-0.093	0.056					
	Q 1	0.000	0.000	0.000	9.228	-0.447	0.271					
N4	Peso propio	0.000	0.000	0.000	-1.943	-0.020	-0.023					
	CM 1	0.000	0.000	0.000	-1.919	-0.093	-0.056					
	Q 1	0.000	0.000	0.000	-9.228	-0.447	-0.271					
N5	Peso propio	0.000	-0.017	-0.015	-	-	-					
	CM 1	-0.002	-0.090	-0.051	-	-	-					
	Q 1	-0.008	-0.434	-0.243	-	-	-					
N6	Peso propio	0.000	0.017	-0.015	-	-	-					
	CM 1	-0.002	0.090	-0.051	-	-	-					
	Q 1	-0.008	0.434	-0.243	-	-	-					
N7	Peso propio	-0.002	0.000	-4.421	-	-	-					
	CM 1	-0.044	0.000	-4.347	-	-	-					
	Q 1	-0.210	0.000	-20.907	-	-	-					
N8	Peso propio	0.005	0.000	-4.327	-	-	-					
	CM 1	-0.012	0.000	-4.291	-	-	-					
	Q 1	-0.056	0.000	-20.636	-	-	-					
N9	Peso propio	0.021	0.000	-3.158	-	-	-					
	CM 1	0.038	0.000	-3.108	-	-	-					
	Q 1	0.184	-0.001	-14.946	-	-	-					
N10	Peso propio	0.029	0.000	-3.076	-	-	-					
	CM 1	0.071	0.000	-3.043	-	-	-					
	Q 1	0.340	0.000	-14.635	-	-	-					
N11	Peso propio	0.021	0.000	-3.158	-	-	-					
	CM 1	0.038	0.000	-3.108	-	-	-					
	Q 1	0.184	0.001	-14.946	-	-	-					
N12	Peso propio	0.029	0.000	-3.076	-	-	-					
	CM 1	0.071	0.000	-3.043	-	-	-					
	Q 1	0.340	0.000	-14.635	-	-	-					
N13	Peso propio	0.025	-0.009	-3.157	-	-	-					
	CM 1	0.054	-0.045	-3.239	-	-	-					

puente 7 a 6 m Fecha: 03/07/25

	Desplazamientos de los nudos, por hipótesis											
		Desplazamientos en ejes globales										
Referencia	Descripción	Dx	Dy	Dz	Gx	Gy	Gz					
		(mm)	(mm)	(mm)	(mRad)	(mRad)	(mRad)					
	Q 1	0.262	-0.215	-15.579	-	-	-					
N14	Peso propio	0.001	0.000	-4.413	-	-	-					
	CM 1	-0.028	0.000	-4.482	-	-	-					
	Q 1	-0.133	0.000	-21.555	-	-	-					
N15	Peso propio	0.025	0.009	-3.157	-	-	-					
	CM 1	0.054	0.045	-3.239	-	-	-					
	Q 1	0.262	0.215	-15.579	-	-	-					

2.3.1.1.2. Combinaciones

	Desplazamientos de los nudos, por combinación												
	Combina	ición		Despla	zamiento	s en ejes	globales						
Referencia	Tipo	Descripción	Dx	Dy	Dz	Gx	Gy	Gz					
	-		(mm)	(mm)	(mm)	(mRad)	(mRad)	(mRad)					
N1	Desplazamientos	PP+CM1	0.000	0.000	0.000	-3.957	0.057	-0.074					
		PP+CM1+Q1	0.000	0.000	0.000	-13.381	0.254	-0.327					
N2	Desplazamientos	PP+CM1	0.000	0.000	0.000	3.957	0.057	0.074					
		PP+CM1+Q1	0.000	0.000	0.000	13.381	0.255	0.327					
N3	Desplazamientos	PP+CM1	0.000	0.000	0.000	3.861	-0.113	0.080					
		PP+CM1+Q1	0.000	0.000	0.000	13.089	-0.560	0.351					
N4	Desplazamientos	PP+CM1	0.000	0.000	0.000	-3.861	-0.113	-0.080					
		PP+CM1+Q1	0.000	0.000	0.000	-13.089	-0.560	-0.351					
N5	Desplazamientos	PP+CM1	-0.002	-0.108	-0.065	-	-	-					
		PP+CM1+Q1	-0.010	-0.542	-0.308	-	-	-					
N6	Desplazamientos	PP+CM1	-0.002	0.108	-0.065	-	-	-					
		PP+CM1+Q1	-0.010	0.542	-0.309	-	-	-					
N7	Desplazamientos	PP+CM1	-0.046	0.000	-8.768	-	-	-					
		PP+CM1+Q1	-0.256	0.000	-29.675	-	-	-					
N8	Desplazamientos	PP+CM1	-0.006	0.000	-8.617	ı	-	-					
		PP+CM1+Q1	-0.062	0.000	-29.254	-	_	-					
N9	Desplazamientos	PP+CM1	0.059	0.000	-6.265	-	-	-					
		PP+CM1+Q1	0.243	-0.001	-21.212	-	-	-					
N10	Desplazamientos	PP+CM1	0.100	0.000	-6.119	-	-	-					
		PP+CM1+Q1	0.440	0.000	-20.753	-	-	-					
N11	Desplazamientos	PP+CM1	0.059	0.000	-6.265	-	-	-					
		PP+CM1+Q1	0.243	0.001	-21.212	-	-	-					
N12	Desplazamientos	PP+CM1	0.100	0.000	-6.119	-	-	-					
		PP+CM1+Q1	0.440	0.000	-20.753	-	-	-					
N13	Desplazamientos	PP+CM1	0.080	-0.053	-6.396	-	-	-					
		PP+CM1+Q1	0.341	-0.268	-21.975	-	-	-					
N14	Desplazamientos	PP+CM1	-0.026	0.000	-8.895	-	-	-					
		PP+CM1+Q1	-0.159	0.000	-30.450	-	-	-					
N15	Desplazamientos	PP+CM1	0.080	0.053	-6.396	-	-	-					
		PP+CM1+Q1	0.341	0.268	-21.975	-	-	-					

puente 7 a 6 m Fecha: 03/07/25

2.3.1.1.3. Envolventes

	Envolvente de los desplazamientos en nudos											
		Combinación		Despla	azamiento	s en ejes	globales					
Referencia	Tipo	Descripción	Dx (mm)	Dy (mm)	Dz (mm)	Gx (mRad)	Gy (mRad)	Gz (mRad)				
N1	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	0.000	-13.381	0.057	-0.327				
		Valor máximo de la envolvente	0.000	0.000	0.000	-3.957	0.254	-0.074				
N2	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	0.000	3.957	0.057	0.074				
		Valor máximo de la envolvente	0.000	0.000	0.000	13.381	0.255	0.327				
N3	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	0.000	3.861	-0.560	0.080				
		Valor máximo de la envolvente	0.000	0.000	0.000	13.089	-0.113	0.351				
N4	Desplazamientos	Valor mínimo de la envolvente	0.000	0.000	0.000	-13.089	-0.560	-0.351				
		Valor máximo de la envolvente	0.000	0.000	0.000	-3.861	-0.113	-0.080				
N5	Desplazamientos	Valor mínimo de la envolvente	-0.010	-0.542	-0.308	-	-	-				
		Valor máximo de la envolvente	-0.002	-0.108	-0.065	-	-	-				
N6	Desplazamientos	Valor mínimo de la envolvente	-0.010	0.108	-0.309	-	-	-				
		Valor máximo de la envolvente	-0.002	0.542	-0.065	-	-	-				
N7	Desplazamientos	Valor mínimo de la envolvente	-0.256	0.000	-29.675	-	-	-				
		Valor máximo de la envolvente	-0.046	0.000	-8.768	-	-	-				
N8	Desplazamientos	Valor mínimo de la envolvente	-0.062	0.000	-29.254	-	-	-				
		Valor máximo de la envolvente	-0.006	0.000	-8.617	-	-	-				
N9	Desplazamientos	Valor mínimo de la envolvente	0.059	-0.001	-21.212	-	-	-				
		Valor máximo de la envolvente	0.243	0.000	-6.265	-	-	-				
N10	Desplazamientos	Valor mínimo de la envolvente	0.100	0.000	-20.753	-	-	-				
		Valor máximo de la envolvente	0.440	0.000	-6.119	-	-	-				
N11	Desplazamientos	Valor mínimo de la envolvente	0.059	0.000	-21.212	-	-	-				
		Valor máximo de la envolvente	0.243	0.001	-6.265	-	-	-				
N12	Desplazamientos	Valor mínimo de la envolvente	0.100	0.000	-20.753	-	-	-				
		Valor máximo de la envolvente	0.440	0.000	-6.119	-	-	-				
N13	Desplazamientos	Valor mínimo de la envolvente	0.080	-0.268	-21.975	-	-	-				
		Valor máximo de la envolvente	0.341	-0.053	-6.396	-	-	-				
N14	Desplazamientos	Valor mínimo de la envolvente	-0.159	0.000	-30.450	-	-	-				
		Valor máximo de la envolvente	-0.026	0.000	-8.895	-	-	-				
N15	Desplazamientos	Valor mínimo de la envolvente	0.080	0.053	-21.975	-	-	-				
		Valor máximo de la envolvente	0.341	0.268	-6.396	-	-	-				

2.3.1.2. Reacciones

Referencias:

Rx, Ry, Rz: Reacciones en nudos con desplazamientos coaccionados (fuerzas). Mx, My, Mz: Reacciones en nudos con giros coaccionados (momentos).

2.3.1.2.1. Hipótesis

	Reacciones	s en los	nudos,	por h	ipótesi	is					
			Reacciones en ejes globales								
Referencia	Descripción	Rx	Ry	Rz	Mx	Му	Mz				
		(t)	(t)	(t)	(t·m)	(t·m)	(t·m)				
N1	Peso propio	0.006	-0.001	0.044	0.000	0.000	0.000				
	CM 1	0.024	-0.001	0.044	0.000	0.000	0.000				
	Q 1	0.114	-0.006	0.212	0.000	0.000	0.000				
N2	Peso propio	0.006	0.001	0.044	0.000	0.000	0.000				
	CM 1	0.024	0.001	0.044	0.000	0.000	0.000				
	Q 1	0.114	0.006	0.212	0.000	0.000	0.000				
N3	Peso propio	-0.006	0.001	0.044	0.000	0.000	0.000				
	CM 1	-0.024	0.003	0.044	0.000	0.000	0.000				

puente 7 a 6 m Fecha: 03/07/25

	Reacciones en los nudos, por hipótesis										
		Reacciones en ejes globales									
Referencia	Descripción	Rx	Ry	Rz	Mx	Му	Mz				
		(t)	(t)	(t)	(t·m)	(t·m)	(t·m)				
	Q 1	-0.114	0.014	0.212	0.000	0.000	0.000				
N4	Peso propio	-0.006	-0.001	0.044	0.000	0.000	0.000				
	CM 1	-0.024	-0.003	0.044	0.000	0.000	0.000				
	Q 1	-0.114	-0.014	0.212	0.000	0.000	0.000				

2.3.1.2.2. Combinaciones

	Reacci	ones en los nudos, por o	ombina	ción				
	Combin	ación		Reaccio	nes en	ejes glo	bales	
Referencia	Tipo	Descripción	Rx (t)	Ry (t)	Rz (t)	Mx (t·m)	My (t·m)	Mz (t·m)
N1	Hormigón en cimentaciones	PP+CM1	0.030	-0.002	0.088	0.000	0.000	0.000
		1.6·PP+CM1	0.034	-0.002	0.115	0.000	0.000	0.000
		PP+1.6·CM1	0.044	-0.003	0.115	0.000	0.000	0.000
		1.6·PP+1.6·CM1	0.048	-0.003	0.141	0.000	0.000	0.000
		PP+CM1+1.6·Q1	0.213	-0.012	0.428	0.000	0.000	0.000
		1.6·PP+CM1+1.6·Q1	0.217	-0.012	0.454	0.000	0.000	0.000
		PP+1.6·CM1+1.6·Q1	0.227	-0.013	0.454	0.000	0.000	0.000
		1.6·PP+1.6·CM1+1.6·Q1	0.231	-0.013	0.481	0.000	0.000	0.000
	Tensiones sobre el terreno	PP+CM1	0.030	-0.002	0.088	0.000	0.000	0.000
		PP+CM1+Q1	0.144	-0.008	0.300	0.000	0.000	0.000
N2	Hormigón en cimentaciones	PP+CM1	0.030	0.002	0.088	0.000	0.000	0.000
		1.6·PP+CM1	0.034	0.002	0.115	0.000	0.000	0.000
		PP+1.6·CM1	0.044	0.003	0.115	0.000	0.000	0.000
		1.6·PP+1.6·CM1	0.048	0.003	0.141	0.000	0.000	0.000
		PP+CM1+1.6·Q1	0.213	0.012	0.428	0.000	0.000	0.000
		1.6·PP+CM1+1.6·Q1	0.217	0.012	0.454	0.000	0.000	0.000
		PP+1.6·CM1+1.6·Q1	0.227	0.013	0.454	0.000	0.000	0.000
		1.6·PP+1.6·CM1+1.6·Q1	0.231	0.013	0.481	0.000	0.000	0.000
	Tensiones sobre el terreno	PP+CM1	0.030	0.002	0.088	0.000	0.000	0.000
		PP+CM1+Q1	0.145	0.008	0.301	0.000	0.000	0.000
N3	Hormigón en cimentaciones	PP+CM1	-0.030	0.004	0.088	0.000	0.000	0.000
		1.6·PP+CM1	-0.034	0.005	0.115	0.000	0.000	0.000
		PP+1.6·CM1	-0.044	0.006	0.115	0.000	0.000	0.000
		1.6·PP+1.6·CM1	-0.048	0.007	0.141	0.000	0.000	0.000
		PP+CM1+1.6·Q1	-0.213	0.027	0.428	0.000	0.000	0.000
		1.6·PP+CM1+1.6·Q1	-0.217	0.028	0.454	0.000	0.000	0.000
		PP+1.6·CM1+1.6·Q1	-0.227	0.029	0.454	0.000	0.000	0.000
		1.6·PP+1.6·CM1+1.6·Q1	-0.231	0.030	0.481	0.000	0.000	0.000
	Tensiones sobre el terreno	PP+CM1	-0.030	0.004	0.088	0.000	0.000	0.000
		PP+CM1+Q1	-0.145	0.019	0.301	0.000	0.000	0.000
N4	Hormigón en cimentaciones	PP+CM1	-0.030	-0.004	0.088	0.000	0.000	0.000
		1.6·PP+CM1	-0.034	-0.005	0.115	0.000	0.000	0.000
		PP+1.6·CM1	-0.044	-0.006	0.115	0.000	0.000	0.000
		1.6·PP+1.6·CM1	-0.048	-0.007	0.141	0.000	0.000	0.000
		PP+CM1+1.6·Q1	-0.213	-0.027	0.428	0.000	0.000	0.000
		1.6·PP+CM1+1.6·Q1	-0.217	-0.028	0.454	0.000	0.000	0.000
		PP+1.6·CM1+1.6·Q1	-0.227	-0.029	0.454	0.000	0.000	0.000
		1.6·PP+1.6·CM1+1.6·Q1	-0.231	-0.030	0.481	0.000	0.000	0.000
	Tensiones sobre el terreno	PP+CM1	-0.030	-0.004	0.088	0.000	0.000	0.000
		PP+CM1+Q1	-0.144	-0.019	0.300	0.000	0.000	0.000

puente 7 a 6 m Fecha: 03/07/25

Nota: Las combinaciones de hormigón indicadas son las mismas que se utilizan para comprobar el estado límite de equilibrio en la cimentación.

2.3.1.2.3. Envolventes

	Eı	nvolventes de las reacciones e	n nudos	}					
	Com	binación	Reacciones en ejes globales						
Referencia	Tipo	Descripción	Rx (t)	Ry (t)	Rz (t)	Mx (t·m)	My (t·m)	Mz (t·m)	
N1	Hormigón en cimentaciones	Valor mínimo de la envolvente	0.030	-0.013	0.088	0.000	0.000	0.000	
		Valor máximo de la envolvente	0.231	-0.002	0.481	0.000	0.000	0.000	
	Tensiones sobre el terreno	Valor mínimo de la envolvente	0.030	-0.008	0.088	0.000	0.000	0.000	
		Valor máximo de la envolvente	0.144	-0.002	0.300	0.000	0.000	0.000	
N2	Hormigón en cimentaciones	Valor mínimo de la envolvente	0.030	0.002	0.088	0.000	0.000	0.000	
		Valor máximo de la envolvente	0.231	0.013	0.481	0.000	0.000	0.000	
	Tensiones sobre el terreno	Valor mínimo de la envolvente	0.030	0.002	0.088	0.000	0.000	0.000	
		Valor máximo de la envolvente	0.145	0.008	0.301	0.000	0.000	0.000	
N3	Hormigón en cimentaciones	Valor mínimo de la envolvente	-0.231	0.004	0.088	0.000	0.000	0.000	
		Valor máximo de la envolvente	-0.030	0.030	0.481	0.000	0.000	0.000	
	Tensiones sobre el terreno	Valor mínimo de la envolvente	-0.145	0.004	0.088	0.000	0.000	0.000	
		Valor máximo de la envolvente	-0.030	0.019	0.301	0.000	0.000	0.000	
N4	Hormigón en cimentaciones	Valor mínimo de la envolvente	-0.231	-0.030	0.088	0.000	0.000	0.000	
		Valor máximo de la envolvente	-0.030	-0.004	0.481	0.000	0.000	0.000	
	Tensiones sobre el terreno	Valor mínimo de la envolvente	-0.144	-0.019	0.088	0.000	0.000	0.000	
		Valor máximo de la envolvente	-0.030	-0.004	0.300	0.000	0.000	0.000	

Nota: Las combinaciones de hormigón indicadas son las mismas que se utilizan para comprobar el estado límite de equilibrio en la cimentación.

2.3.2. Barras

2.3.2.1. Esfuerzos

Referencias:

N: Esfuerzo axil (t)

Vy: Esfuerzo cortante según el eje local Y de la barra. (t)

Vz: Esfuerzo cortante según el eje local Z de la barra. (t)

Mt: Momento torsor (t·m)

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de la barra). (t·m)

Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de la barra). (t·m)

2.3.2.1.1. Hipótesis

				Esfuerzo	s en barra	as, por hi	pótesis				
Daws	Llinátearia	Faf auma				Posici	ones en la	barra			
Barra	Hipótesis	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N1/N11	Peso propio	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vz	-0.043	-0.040	-0.038	-0.036	-0.034	-0.031	-0.029	-0.027	-0.025
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.000	0.009	0.018	0.026	0.033	0.040	0.047	0.053	0.059
		Mz	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001
	CM 1	N	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vz	-0.039	-0.038	-0.036	-0.035	-0.034	-0.033	-0.032	-0.031	-0.031
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.000	0.008	0.017	0.024	0.032	0.039	0.046	0.053	0.060
		Mz	0.000	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.003
	Q 1	N	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
		Vy	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
		Vz	-0.189	-0.182	-0.176	-0.169	-0.162	-0.156	-0.152	-0.150	-0.149
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

uente 7 a 6 m Fecha: 03/07/25

	Esfuerzos en barras, por hipótesis											
Darra	Hinátosis	ótesis Esfuerzo		Posiciones en la barra								
Barra	піросезіѕ		0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m	
		Му	0.000	0.041	0.080	0.117	0.154	0.188	0.222	0.255	0.288	
		Mz	0.002	0.003	0.005	0.006	0.007	0.009	0.010	0.011	0.013	

Esfuerzos en barras, por hipótesis											
Daws	Llinátecia	Cof., our				Posici	ones en la	barra			
Barra Hipótesis	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m	
N11/N7	Peso propio	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz	-0.019	-0.017	-0.014	-0.012	-0.010	-0.008	-0.006	-0.003	-0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.059	0.063	0.066	0.069	0.072	0.074	0.075	0.076	0.077
		Mz	0.001	0.001	0.000	0.000	0.000	0.000	-0.001	-0.001	-0.001
	CM 1	N	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
		Vy	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
		Vz	-0.012	-0.012	-0.012	-0.011	-0.010	-0.008	-0.007	-0.006	-0.004
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.060	0.063	0.065	0.068	0.070	0.072	0.074	0.075	0.076
		Mz	0.003	0.002	0.001	0.000	-0.001	-0.001	-0.002	-0.003	-0.004
	Q 1	N	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015
		Vy	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018
		Vz	-0.060	-0.059	-0.056	-0.052	-0.046	-0.040	-0.033	-0.027	-0.020
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.288	0.301	0.313	0.325	0.336	0.346	0.354	0.360	0.365
		Mz	0.013	0.009	0.005	0.001	-0.003	-0.007	-0.010	-0.014	-0.018

	Esfuerzos en barras, por hipótesis											
Down	Llinátagia	Faf auma				Posici	ones en la	barra				
Barra	Barra Hipótesis	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m	
N7/N9	Peso propio	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	
		Vz	0.001	0.003	0.006	0.008	0.010	0.012	0.014	0.017	0.019	
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Му	0.077	0.076	0.075	0.074	0.072	0.069	0.066	0.063	0.059	
		Mz	-0.001	-0.001	-0.001	0.000	0.000	0.000	0.000	0.001	0.001	
	CM 1	N	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	
		Vy	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	
		Vz	0.004	0.006	0.007	0.008	0.010	0.011	0.012	0.012	0.012	
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Му	0.076	0.075	0.074	0.072	0.070	0.068	0.065	0.063	0.060	
		Mz	-0.004	-0.003	-0.002	-0.001	-0.001	0.000	0.001	0.002	0.003	
	Q 1	N	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	-0.015	
		Vy	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	
		Vz	0.020	0.027	0.033	0.040	0.046	0.052	0.056	0.059	0.060	
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Му	0.365	0.360	0.354	0.346	0.336	0.325	0.313	0.301	0.288	
		Mz	-0.018	-0.014	-0.010	-0.007	-0.003	0.001	0.005	0.009	0.013	

	Esfuerzos en barras, por hipótesis										
Parra	Hinátosis	Esfuerzo	Posiciones en la barra								
Dalla	Barra Hipótesis	Estuerzo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
N9/N2	Peso propio	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz	0.025	0.027	0.029	0.031	0.034	0.036	0.038	0.040	0.043
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.059	0.053	0.047	0.040	0.033	0.026	0.018	0.009	0.000

puente 7 a 6 m Fecha: 03/07/25

	Esfuerzos en barras, por hipótesis												
Parra	Hinátosis	Hipótesis Esfuerzo		Posiciones en la barra									
Dalla	Barra Hipótesis	Estuerzo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m		
		Mz	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000		
	CM 1	N	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003		
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		
		Vz	0.031	0.031	0.032	0.033	0.034	0.035	0.036	0.038	0.039		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		My	0.060	0.053	0.046	0.039	0.032	0.024	0.017	0.008	0.000		
		Mz	0.003	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.000		
	Q 1	N	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015		
		Vy	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006		
		Vz	0.149	0.150	0.152	0.156	0.162	0.169	0.176	0.182	0.189		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Му	0.288	0.255	0.222	0.188	0.154	0.117	0.080	0.041	0.000		
		Mz	0.013	0.011	0.010	0.009	0.007	0.006	0.005	0.003	0.002		

	Esfuerzos en barras, por hipótesis										
Barra	Hinátosis	Esfuerzo	Posiciones en la barra								
Dalla	Hipótesis	LSiueizo	0.000 m	0.300 m	0.600 m						
N2/N6	Peso propio	N	-0.007	-0.007	-0.007						
		Vy	0.000	0.000	0.000						
		Vz	-0.002	-0.001	-0.001						
		Mt	0.000	0.000	0.000						
		Му	0.000	0.000	0.000						
		Mz	0.000	0.000	0.000						
	CM 1	N	-0.025	-0.025	-0.025						
		Vy	0.002	0.002	0.002						
		Vz	-0.005	-0.005	-0.005						
		Mt	0.000	0.000	0.000						
		Му	-0.001	0.000	0.002						
		Mz	0.000	0.000	-0.001						
	Q 1	N	-0.120	-0.120	-0.120						
		Vy	0.008	0.008	0.008						
		Vz	-0.023	-0.023	-0.023						
		Mt	0.000	0.000	0.000						
		Му	-0.006	0.001	0.008						
		Mz	0.002	0.000	-0.003						

	Esfuerzos en barras, por hipótesis										
Barra	Linátosis	Esfuerzo	Posiciones en la barra								
Dalla	Hipótesis	Estuerzo	0.000 m	0.300 m	0.600 m						
N6/N3	Peso propio	N	-0.007	-0.007	-0.007						
		Vy	0.000	0.000	0.000						
		Vz	0.001	0.001	0.002						
		Mt	0.000	0.000	0.000						
		Му	0.000	0.000	0.000						
		Mz	0.000	0.000	0.000						
	CM 1	N	-0.025	-0.025	-0.025						
		Vy	-0.002	-0.002	-0.002						
		Vz	0.003	0.003	0.003						

	Esfuerzos en barras, por hipótesis									
Darra	∐inátosis	Ecfuerzo	Posiciones en la barra							
Barra	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m					
		Mt	0.000	0.000	0.000					
		Му	0.002	0.001	0.000					
		Mz	-0.001	0.000	0.001					
	Q 1	N	-0.120	-0.120	-0.120					
		Vy	-0.011	-0.011	-0.011					
		Vz	0.016	0.016	0.016					
		Mt	0.000	0.000	0.000					
		Му	0.008	0.003	-0.002					
		Mz	-0.003	0.000	0.004					

	Esfuerzos en barras, por hipótesis										
	11: /1 :						ones en la	barra			
Barra	Hipótesis	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N4/N12	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vz	-0.041	-0.039	-0.036	-0.034	-0.032	-0.030	-0.028	-0.025	-0.023
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.000	0.009	0.017	0.025	0.032	0.039	0.045	0.051	0.056
		Mz	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
		Vz	-0.034	-0.034	-0.034	-0.033	-0.032	-0.030	-0.029	-0.028	-0.026
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.001	0.009	0.016	0.024	0.031	0.037	0.044	0.050	0.056
		Mz	-0.001	0.000	0.000	0.001	0.001	0.002	0.002	0.003	0.004
	Q 1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012
		Vz	-0.166	-0.165	-0.162	-0.158	-0.152	-0.146	-0.139	-0.133	-0.126
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.006	0.042	0.078	0.113	0.147	0.180	0.211	0.241	0.269
		Mz	-0.004	-0.001	0.001	0.004	0.007	0.009	0.012	0.014	0.017

	Esfuerzos en barras, por hipótesis										
Parra	Hipótesis	Ecfuerzo				Posici	ones en la	barra			
Barra	піросезіѕ	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N12/N8	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz	-0.021	-0.018	-0.016	-0.014	-0.012	-0.010	-0.007	-0.005	-0.003
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.056	0.060	0.064	0.067	0.070	0.073	0.074	0.076	0.077
		Mz	0.001	0.001	0.001	0.000	0.000	0.000	-0.001	-0.001	-0.001
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
		Vz	-0.018	-0.017	-0.015	-0.014	-0.012	-0.011	-0.010	-0.010	-0.010
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.056	0.060	0.063	0.066	0.069	0.072	0.074	0.076	0.078
		Mz	0.004	0.003	0.002	0.001	0.000	-0.001	-0.002	-0.003	-0.004
	Q 1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vy	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021
		Vz	-0.086	-0.080	-0.073	-0.066	-0.060	-0.054	-0.050	-0.047	-0.046
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.269	0.287	0.304	0.319	0.333	0.345	0.356	0.367	0.377
		Mz	0.017	0.012	0.008	0.003	-0.002	-0.006	-0.011	-0.016	-0.020

	Esfuerzos en barras, por hipótesis										
	_						ones en la	barra			
Barra	Hipótesis	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N8/N10	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vz	0.003	0.005	0.007	0.010	0.012	0.014	0.016	0.018	0.021
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.077	0.076	0.074	0.073	0.070	0.067	0.064	0.060	0.056
		Mz	-0.001	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.001
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
		Vz	0.010	0.010	0.010	0.011	0.012	0.014	0.015	0.017	0.018
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.078	0.076	0.074	0.072	0.069	0.066	0.063	0.060	0.056
		Mz	-0.004	-0.003	-0.002	-0.001	0.000	0.001	0.002	0.003	0.004
	Q 1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vy	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021
		Vz	0.046	0.047	0.050	0.054	0.060	0.066	0.073	0.080	0.086
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.377	0.367	0.356	0.345	0.333	0.319	0.304	0.287	0.269
		Mz	-0.020	-0.016	-0.011	-0.006	-0.002	0.003	0.008	0.012	0.017

	Esfuerzos en barras, por hipótesis										
Вамия	Llinátecia	Fafi i auma				Posici	ones en la	barra			
Barra	Hipótesis	Esfuerzo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
N10/N3	Peso propio	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vz	0.023	0.025	0.028	0.030	0.032	0.034	0.036	0.039	0.041
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.056	0.051	0.045	0.039	0.032	0.025	0.017	0.009	0.000
		Mz	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
		Vz	0.026	0.028	0.029	0.030	0.032	0.033	0.034	0.034	0.034
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.056	0.050	0.044	0.037	0.031	0.024	0.016	0.009	0.001
		Mz	0.004	0.003	0.002	0.002	0.001	0.001	0.000	0.000	-0.001
	Q 1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
		Vz	0.126	0.133	0.139	0.146	0.152	0.158	0.162	0.165	0.166
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.269	0.241	0.211	0.180	0.147	0.113	0.078	0.042	0.006
		Mz	0.017	0.014	0.012	0.009	0.007	0.004	0.001	-0.001	-0.004

	Esfuerzos en barras, por hipótesis									
Barra	Hipótesis	Esfuerzo	Posicio	ones en la	barra					
Dalla	Tilpotesis	LSiueizo	0.000 m	0.300 m	0.600 m					
N1/N5	Peso propio	N	-0.007	-0.007	-0.007					
		Vy	0.000	0.000	0.000					
		Vz	-0.002	-0.001	-0.001					
		Mt	0.000	0.000	0.000					
		Му	0.000	0.000	0.000					
		Mz	0.000	0.000	0.000					
	CM 1	N	-0.025	-0.025	-0.025					
		Vy	-0.002	-0.002	-0.002					
		Vz	-0.005	-0.005	-0.005					

	Esfuerzos en barras, por hipótesis									
Barra	Hinátosis	Ecfuerzo	Posicio	ones en la	barra					
Dalla	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m					
		Mt	0.000	0.000	0.000					
		Му	-0.001	0.000	0.002					
		Mz	0.000	0.000	0.001					
	Q 1	N	-0.120	-0.120	-0.120					
		Vy	-0.008	-0.008	-0.008					
		Vz	-0.023	-0.023	-0.023					
		Mt	0.000	0.000	0.000					
		Му	-0.006	0.001	0.008					
		Mz	-0.002	0.000	0.003					

	Esfuerzo	s en barr	as, por h	Esfuerzos en barras, por hipótesis									
Barra	Hinátosis	Esfuerzo	Posicio	ones en la	barra								
Dalla	Hipótesis	LSiueizo	0.000 m	0.300 m	0.600 m								
N5/N4	Peso propio	N	-0.007	-0.007	-0.007								
		Vy	0.000	0.000	0.000								
		Vz	0.001	0.001	0.002								
		Mt	0.000	0.000	0.000								
		Му	0.000	0.000	0.000								
		Mz	0.000	0.000	0.000								
	CM 1	N	-0.025	-0.025	-0.025								
		Vy	0.002	0.002	0.002								
		Vz	0.003	0.003	0.003								
		Mt	0.000	0.000	0.000								
		Му	0.002	0.001	0.000								
		Mz	0.001	0.000	-0.001								
	Q 1	N	-0.120	-0.120	-0.120								
		Vy	0.011	0.011	0.011								
		Vz	0.016	0.016	0.016								
		Mt	0.000	0.000	0.000								
		Му	0.008	0.003	-0.002								
		Mz	0.003	0.000	-0.004								

	Esfuerzos en barras, por hipótesis								
Barra	Linátosis	Ecfuerze	Posiciones en la barra						
Dalla	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m				
N7/N14	Peso propio	N	-0.002	-0.002	-0.002				
		Vy	0.000	0.000	0.000				
		Vz	-0.002	-0.002	-0.001				
		Mt	0.000	0.000	0.000				
		Му	0.000	0.001	0.001				
		Mz	0.000	0.000	0.000				
	CM 1	N	-0.007	-0.007	-0.007				
		Vy	0.000	0.000	0.000				
		Vz	-0.008	-0.008	-0.008				
		Mt	0.000	0.000	0.000				

	Esfuerzos en barras, por hipótesis									
Barra	Hinátosis	Ecfuerza	Posicio	ones en la	barra					
Dalla	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m					
		Му	0.000	0.002	0.005					
		Mz	0.000	0.000	0.000					
	Q 1	N	-0.035	-0.035	-0.035					
		Vy	0.000	0.000	0.000					
		Vz	-0.040	-0.040	-0.040					
		Mt	0.000	0.000	0.000					
		Му	-0.002	0.010	0.022					
		Mz	0.000	0.000	0.000					

	Esfuerzos en barras, por hipótesis									
Barra	Hipótesis	Esfuerzo	Posicio	ones en la	barra					
Dalla	Tilpotesis	LSIUCIZO	0.000 m	0.300 m	0.600 m					
N14/N8	Peso propio	N	-0.002	-0.002	-0.002					
		Vy	0.000	0.000	0.000					
		Vz	0.001	0.002	0.002					
		Mt	0.000	0.000	0.000					
		Му	0.001	0.001	0.000					
		Mz	0.000	0.000	0.000					
	CM 1	N	-0.007	-0.007	-0.007					
		Vy	0.000	0.000	0.000					
		Vz	0.008	0.008	0.008					
		Mt	0.000	0.000	0.000					
		Му	0.005	0.002	0.000					
		Mz	0.000	0.000	0.000					
	Q 1	N	-0.035	-0.035	-0.035					
		Vy	0.000	0.000	0.000					
		Vz	0.040	0.040	0.040					
		Mt	0.000	0.000	0.000					
		Му	0.022	0.010	-0.002					
		Mz	0.000	0.000	0.000					

	Esfuerzos en barras, por hipótesis									
Barra	Hipótesis	Esfuerzo	Posiciones en la barra							
Dalla	Tilpotesis	LSIUEIZO	0.000 m	0.300 m	0.600 m					
N9/N15	Peso propio	N	-0.002	-0.002	-0.002					
		Vy	0.000	0.000	0.000					
		Vz	-0.002	-0.002	-0.001					
		Mt	0.000	0.000	0.000					
		Му	0.000	0.001	0.001					
		Mz	0.000	0.000	0.000					
	CM 1	N	-0.007	-0.007	-0.007					
		Vy	0.000	0.000	0.000					
		Vz	-0.008	-0.008	-0.008					
		Mt	0.000	0.000	0.000					
		Му	0.000	0.002	0.005					

	Esfuerzos	en barra	as, por hi	pótesis	
Darra	Hinátosis	Ecfuerza	Posicio	ones en la	barra
Barra	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m
		Mz	0.000	0.000	0.000
	Q 1	N	-0.033	-0.033	-0.033
		Vy	0.002	0.002	0.002
		Vz	-0.040	-0.040	-0.040
		Mt	0.000	0.000	0.000
		My -0.002 0.010		0.010	0.022
		Mz	0.000	0.000	-0.001

	Esfuerzos	en barra	s, por hij	pótesis						
Darra	∐inátosis	Esfuerzo	Posicio	ones en la	barra					
Barra	Hipótesis	Estuerzo	0.000 m	0.300 m	0.600 m					
N15/N10	Peso propio	N	-0.002	-0.002	-0.002					
		Vy	0.000	0.000	0.000					
		Vz	0.001	0.002	0.002					
		Mt	0.000	0.000	0.000					
		Му	0.001	0.001	0.000					
		Mz	0.000	0.000	0.000					
	CM 1	N	-0.007	-0.007	-0.007					
				Vy	0.000	0.000	0.000			
		Vz	0.008	0.008	0.008					
		Mt	0.000	0.000	0.000					
		Му	0.005	0.002	0.000					
		Mz	0.000	0.000	0.000					
	Q 1	N	-0.033	-0.033	-0.033					
	-					Vy	Vy	-0.002	-0.002	-0.002
		Vz	0.040	0.040	0.040					
		Mt	0.000	0.000	0.000					
		Му	0.022	0.010	-0.002					
		Mz	-0.001	0.000	0.000					

	Esfuerzos	en barra	s, por hij	pótesis			
Barra	Linátosis	Esfuerzo	Posicio	ones en la	barra		
Darra	Hipótesis	LSIUEIZO	0.000 m	0.300 m	0.600 m		
N11/N13	Peso propio	N	-0.002	-0.002	-0.002		
		Vy	0.000	0.000	0.000		
		Vz	-0.002	-0.002	-0.001		
		Mt	0.000	0.000	0.000		
		Му	0.000	0.001	0.001		
		Mz	0.000	0.000	0.000		
	CM 1	N	-0.007	-0.007	-0.007		
				Vy	0.000	0.000	0.000
		Vz	-0.008	-0.008	-0.008		
		Mt	0.000	0.000	0.000		
		Му	0.000	0.002	0.005		
		Mz	0.000	0.000	0.000		

	Esfuerzos en barras, por hipótesis												
Parra	Linátorio	Ecfuerza	Posicio	ones en la	barra								
Barra	Hipótesis	Esfuerzo	0.000 m	0.300 m	0.600 m								
	Q 1	N	-0.033	-0.033	-0.033								
		Vy	-0.002	-0.002	-0.002								
		Vz	-0.040	-0.040	-0.040								
		Mt	0.000	0.000	0.000								
		Му	-0.002	0.010	0.022								
			0.000	0.000	0.001								

	Esfuerzos	en barra	s, por hij	pótesis				
Barra	Hinátosis	Esfuerzo	Posicio	ones en la	barra			
Dalla	Hipótesis	Estuerzo	0.000 m	0.300 m	0.600 m			
N13/N12	Peso propio	N	-0.002	-0.002	-0.002			
		Vy	0.000	0.000	0.000			
		Vz	0.001	0.002	0.002			
		Mt	0.000	0.000	0.000			
		Му	0.001	0.001	0.000			
		Mz	0.000	0.000	0.000			
	CM 1	N	-0.007	-0.007	-0.007			
			Vy	0.000	0.000	0.000		
							Vz	0.008
		Mt	0.000	0.000	0.000			
		Му	0.005	0.002	0.000			
		Mz	0.000	0.000	0.000			
	Q 1	N	-0.033	-0.033	-0.033			
		Vy	0.002	0.002	0.002			
		Vz	0.040	0.040	0.040			
		Mt	0.000	0.000	0.000			
		Му	0.022	0.010	-0.002			
		Mz	0.001	0.000	0.000			

				Esfuerzos	s en barra	as, por hi	pótesis				
Barra	Hipótesis	Esfuerzo				Posici	ones en la	barra			
Dalla	nipotesis	Estuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N4/N11	Peso propio	N	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.002
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.006	-0.005	-0.004	-0.002	-0.001	0.000	0.003	0.004	0.005
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	-0.002	-0.001	0.000	0.002	0.002	0.002	0.001	0.001	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.030	-0.025	-0.019	-0.009	-0.003	0.002	0.012	0.018	0.023
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	-0.009	-0.003	0.002	0.008	0.009	0.009	0.006	0.003	-0.002

	Esfuerzos en barras, por hipótesis											
Barra Hipótes	Hinátosis	Hipótesis Esfuerzo		Posiciones en la barra								
	nipotesis		0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m	
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

				Esfuerzo	s en barra	as, por hi	pótesis				
Вамия	Llinátecia	Cof				Posici	ones en la	barra			
Barra	Hipótesis	Esfuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N11/N8	Peso propio	N	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.002
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.006	-0.004	-0.003	-0.001	0.000	0.001	0.003	0.004	0.006
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	-0.001	0.000	0.001	0.002	0.002	0.002	0.001	0.000	-0.001
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.027	-0.021	-0.016	-0.005	0.000	0.005	0.016	0.021	0.027
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	-0.003	0.002	0.006	0.010	0.011	0.010	0.006	0.002	-0.003
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	Esfuerzos en barras, por hipótesis												
Вамия	Himátosia	Fafurane				Posici	ones en la	barra					
Barra	Hipótesis	Esfuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m		
N8/N9	Peso propio	N	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Vz	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.002		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		My	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000		
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	CM 1	N	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014		
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Vz	-0.006	-0.004	-0.003	-0.001	0.000	0.001	0.003	0.004	0.006		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		My	-0.001	0.000	0.001	0.002	0.002	0.002	0.001	0.000	-0.001		
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	Q 1	N	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069		
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Vz	-0.027	-0.021	-0.016	-0.005	0.000	0.005	0.016	0.021	0.027		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Му	-0.003	0.002	0.006	0.010	0.011	0.010	0.006	0.002	-0.003		
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

	Esfuerzos en barras, por hipótesis											
Parra	Hipótesis	Esfuerzo				Posici	ones en la	barra				
Dalla	Barra Hipótesis E		0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m	
N9/N3	Peso propio	N	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vz	-0.002	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.002	
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Му	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000	
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

				Esfuerzo	s en barr	as, por hi	pótesis				
Daws	Himátagia	Cof ou				Posici	ones en la	barra			
Barra	Hipótesis	Esfuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
	CM 1	N	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.005	-0.004	-0.003	0.000	0.001	0.002	0.004	0.005	0.006
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.000	0.001	0.001	0.002	0.002	0.002	0.000	-0.001	-0.002
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.023	-0.018	-0.012	-0.002	0.003	0.009	0.019	0.025	0.030
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	-0.002	0.003	0.006	0.009	0.009	0.008	0.002	-0.003	-0.009
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	Esfuerzos en barras, por hipótesis												
Daws	Llináteacia	F-6				Posici	ones en la	barra					
Barra	Hipótesis	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m		
N13/N14	Peso propio	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001		
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Vz	-0.001	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.001		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Му	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000		
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	CM 1	N	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005		
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Vz	-0.008	-0.006	-0.003	-0.002	0.000	0.002	0.003	0.006	0.008		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Му	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000		
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	Q 1	N	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022		
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Vz	-0.040	-0.027	-0.017	-0.008	0.000	0.007	0.017	0.027	0.040		
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Му	-0.001	0.006	0.011	0.014	0.014	0.014	0.011	0.006	-0.001		
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

				Esfuerzos	en barra	s, por hip	ótesis				
Daws	Llimáteoria	F-6				Posici	ones en la	barra			
Barra	Hipótesis	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N14/N15	Peso propio	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.001	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.008	-0.006	-0.003	-0.002	0.000	0.002	0.003	0.006	0.008
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.040	-0.027	-0.017	-0.008	0.000	0.007	0.017	0.027	0.040
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	-0.001	0.006	0.011	0.014	0.014	0.014	0.011	0.006	-0.001
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

puente 7 a 6 m Fecha: 03/07/25

				Esfuerzo	s en barra	as, por hi	pótesis				
D	11: 44:-	Г-6				Posici	ones en la	barra			
Barra	Hipótesis	Esfuerzo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
N15/N6	Peso propio	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.001	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.008	-0.006	-0.003	-0.002	0.000	0.002	0.003	0.006	0.008
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.040	-0.027	-0.017	-0.008	0.000	0.007	0.017	0.027	0.040
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	-0.001	0.006	0.011	0.014	0.015	0.014	0.011	0.006	-0.001
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

				Esfuerzos	s en barra	as, por hi	pótesis				
Darra	Hipótesis	Esfuerzo				Posici	ones en la	barra			
Barra	nipotesis	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N5/N13	Peso propio	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.001	-0.001	-0.001	0.000	0.000	0.000	0.001	0.001	0.001
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	CM 1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.008	-0.006	-0.003	-0.002	0.000	0.002	0.003	0.006	0.008
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Q 1	N	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019
		Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz	-0.040	-0.027	-0.017	-0.008	0.000	0.007	0.017	0.027	0.040
		Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Му	-0.001	0.006	0.011	0.014	0.015	0.014	0.011	0.006	-0.001
		Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

2.3.2.1.2. Combinaciones

			Esf	uerzos er	barras, p	or combi	nación					
Down		Combinación	Cofuerza				Posici	ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N1/N11	Madera	0.8·PP+0.8·CM1	N	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
			Vy	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vz	-0.065	-0.063	-0.060	-0.057	-0.054	-0.051	-0.049	-0.047	-0.045
				0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.014	0.027	0.040	0.052	0.064	0.075	0.085	0.095
			Mz	0.000	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.003
		1.35·PP+0.8·CM1	N	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vz	-0.089	-0.085	-0.081	-0.077	-0.072	-0.069	-0.065	-0.061	-0.058
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.019	0.037	0.054	0.071	0.086	0.101	0.114	0.127
			Mz	0.000	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.003
		0.8·PP+1.35·CM1	N	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005

	Esfuerzos en barras, por combinación											
-		Combinación	F. 6				Posici	ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vz	-0.087	-0.083	-0.080	-0.076	-0.072	-0.069	-0.066	-0.064	-0.062
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.019	0.036	0.054	0.070	0.085	0.100	0.114	0.128
			Mz	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.004	0.004
		1.35·PP+1.35·CM1	N	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
			Vy	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
			Vz	-0.110	-0.106	-0.101	-0.096	-0.091	-0.086	-0.082	-0.079	-0.075
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.024	0.046	0.068	0.088	0.108	0.126	0.144	0.160
			Mz	0.001	0.001	0.002	0.002	0.003	0.003	0.004	0.004	0.005
		0.8·PP+0.8·CM1+1.5·Q1	N	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
			Vy	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010
			Vz	-0.349	-0.336	-0.323	-0.310	-0.297	-0.286	-0.277	-0.271	-0.268
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.075	0.147	0.216	0.283	0.346	0.408	0.468	0.527
			Mz	0.004	0.006	0.008	0.010	0.013	0.015	0.017	0.020	0.022
		1.35·PP+0.8·CM1+1.5·Q1	N	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026
			Vy	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011
			Vz	-0.372	-0.358	-0.344	-0.330	-0.316	-0.303	-0.293	-0.286	-0.282
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.080	0.157	0.230	0.301	0.369	0.434	0.497	0.559
			Mz	0.004	0.006	0.008	0.011	0.013	0.015	0.018	0.020	0.022
		0.8·PP+1.35·CM1+1.5·Q1	N	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
			Vy	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011
			Vz	-0.370	-0.357	-0.343	-0.329	-0.316	-0.304	-0.295	-0.288	-0.285
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.080	0.156	0.230	0.300	0.368	0.433	0.497	0.560
			Mz	0.004	0.006	0.009	0.011	0.014	0.016	0.018	0.021	0.023
		1.35·PP+1.35·CM1+1.5·Q1	N	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
			Vy	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011
			Vz	-0.394	-0.379	-0.364	-0.349	-0.334	-0.321	-0.311	-0.303	-0.299
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.085	0.166	0.244	0.319	0.390	0.459	0.526	0.592
			Mz	0.004	0.006	0.009	0.011	0.014	0.016	0.019	0.021	0.024

	Esfuerzos en barras, por combinación Combinación Posiciones en la barra											
Barra		Combinación	Esfuerzo				Posici	ones en la	barra			
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N11/N7	Madera	0.8·PP+0.8·CM1	N	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
			Vy	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
			Vz	-0.025	-0.023	-0.021	-0.018	-0.016	-0.013	-0.010	-0.007	-0.004
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.095	0.100	0.105	0.109	0.113	0.116	0.119	0.121	0.122
			Mz	0.003	0.002	0.001	0.000	-0.001	-0.001	-0.002	-0.003	-0.004
		1.35·PP+0.8·CM1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vy	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
			Vz	-0.035	-0.032	-0.029	-0.025	-0.021	-0.017	-0.013	-0.009	-0.005
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.127	0.135	0.142	0.148	0.153	0.157	0.160	0.163	0.164
			Mz	0.003	0.002	0.001	0.000	-0.001	-0.002	-0.003	-0.004	-0.005
		0.8·PP+1.35·CM1	N	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
			Vy	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
			Vz	-0.032	-0.030	-0.027	-0.024	-0.021	-0.017	-0.014	-0.010	-0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.128	0.135	0.141	0.147	0.152	0.156	0.159	0.162	0.164
			Mz	0.004	0.003	0.002	0.000	-0.001	-0.002	-0.003	-0.005	-0.006
		1.35·PP+1.35·CM1	N	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
			Vy	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
			Vz	-0.042	-0.039	-0.035	-0.031	-0.027	-0.022	-0.017	-0.012	-0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.160	0.169	0.177	0.185	0.191	0.196	0.201	0.204	0.206
			Mz	0.005	0.003	0.002	0.001	-0.001	-0.002	-0.004	-0.005	-0.007
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025
			Vy	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
			Vz	-0.115	-0.111	-0.105	-0.097	-0.085	-0.073	-0.060	-0.047	-0.034
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.527	0.552	0.575	0.598	0.618	0.635	0.649	0.661	0.670
			Mz	0.022	0.015	0.009	0.002	-0.005	-0.011	-0.018	-0.024	-0.031

			Esf	uerzos er	barras, p	or combi	nación					
Barra		Combinación	Esfuerzo				Posici	ones en la	barra			
Dalla	Tipo	Descripción	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025
			Vy	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
			Vz	-0.125	-0.121	-0.113	-0.104	-0.091	-0.077	-0.063	-0.049	-0.035
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.559	0.586	0.612	0.636	0.657	0.675	0.691	0.703	0.712
			Mz	0.022	0.016	0.009	0.002	-0.005	-0.011	-0.018	-0.025	-0.032
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027
			Vy	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032
			Vz	-0.121	-0.118	-0.112	-0.103	-0.091	-0.077	-0.064	-0.050	-0.036
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.560	0.586	0.611	0.635	0.656	0.674	0.690	0.702	0.712
			Mz	0.023	0.016	0.009	0.002	-0.005	-0.012	-0.019	-0.026	-0.033
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027
			Vy	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
			Vz	-0.132	-0.127	-0.120	-0.110	-0.096	-0.081	-0.067	-0.052	-0.037
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.592	0.621	0.648	0.673	0.695	0.715	0.731	0.744	0.754
			Mz	0.024	0.017	0.009	0.002	-0.005	-0.012	-0.019	-0.027	-0.034

			Fe	fuerzos e	n barras,	nor comb	inación					
		Combinación		1461203 6	ii bairas,	por comb		iones en la	harra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.438 m		0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N7/N9	Madera	0.8·PP+0.8·CM1	N	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
,			Vy	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vz	0.004	0.007	0.010	0.013	0.016	0.018	0.021	0.023	0.025
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.122	0.121	0.119	0.116	0.113	0.109	0.105	0.100	0.095
			Mz	-0.004	-0.003	-0.002	-0.001	-0.001	0.000	0.001	0.002	0.003
		1.35·PP+0.8·CM1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vy	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
			Vz	0.005	0.009	0.013	0.017	0.021	0.025	0.029	0.032	0.035
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.164	0.163	0.160	0.157	0.153	0.148	0.142	0.135	0.127
			Mz	-0.005	-0.004	-0.003	-0.002	-0.001	0.000	0.001	0.002	0.003
		0.8·PP+1.35·CM1	N	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
			Vy	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
			Vz	0.007	0.010	0.014	0.017	0.021	0.024	0.027	0.030	0.032
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.164	0.162	0.159	0.156	0.152	0.147	0.141	0.135	0.128
			Mz	-0.006	-0.005	-0.003	-0.002	-0.001	0.000	0.002	0.003	0.004
		1.35·PP+1.35·CM1	N	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
			Vy	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007
			Vz	0.007	0.012	0.017	0.022	0.027	0.031	0.035	0.039	0.042
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.206	0.204	0.201	0.196	0.191	0.185	0.177	0.169	0.160
			Mz	-0.007	-0.005	-0.004	-0.002	-0.001	0.001	0.002	0.003	0.005
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025
			Vy	-0.030	-0.030	-0.030	-0.030	-0.030	-0.030	-0.030	-0.030	-0.030
			Vz	0.034	0.047	0.060	0.073	0.085	0.097	0.105	0.111	0.115
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.670	0.661	0.649	0.635	0.618	0.598	0.575	0.552	0.527
			Mz	-0.031	-0.024	-0.018	-0.011	-0.005	0.002	0.009	0.015	0.022
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025	-0.025
		_	Vy	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031	-0.031
			Vz	0.035	0.049	0.063	0.077	0.091	0.104	0.113	0.121	0.125
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.712	0.703	0.691	0.675	0.657	0.636	0.612	0.586	0.559
			Mz	-0.032	-0.025	-0.018	-0.011	-0.005	0.002	0.009	0.016	0.022
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027
			Vy	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032
			Vz	0.036	0.050	0.064	0.077	0.091	0.103	0.112	0.118	0.121
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.712	0.702	0.690	0.674	0.656	0.635	0.611	0.586	0.560
			Mz	-0.033	-0.026	-0.019	-0.012	-0.005	0.002	0.009	0.016	0.023
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027
			Vy	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033
			Vz	0.037	0.052	0.067	0.081	0.096	0.109	0.120	0.127	0.132
1			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.754	0.744	0.731	0.715	0.695	0.673	0.648	0.621	0.592
		1										

			Est	fuerzos e	n barras,	por comb	inación					
D =		Combinación	Г-6				Posici	ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
			Mz	-0.034	-0.027	-0.019	-0.012	-0.005	0.002	0.009	0.017	0.024

			Es	fuerzos e	n barras,	por comb	inación					
Barra		Combinación	Esfuerzo				Posici	ones en la	barra			
Darra	Tipo	Descripción	LSIUCIZO	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
N9/N2	Madera	0.8·PP+0.8·CM1	N	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
1			Vy	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
1			Vz	0.045	0.047	0.049	0.051	0.054	0.057	0.060	0.063	0.065
1			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1			My	0.095	0.085	0.075	0.064	0.052	0.040	0.027	0.014	0.000
1			Mz	0.003	0.003	0.002	0.002	0.002	0.001	0.001	0.001	0.000
1		1.35·PP+0.8·CM1	N	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
1			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1			Vz	0.058	0.061	0.065	0.069	0.072	0.077	0.081	0.085	0.089
1			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1			Му	0.127	0.114	0.101	0.086	0.071	0.054	0.037	0.019	0.000
1			Mz	0.003	0.003	0.003	0.002	0.002	0.002	0.001	0.001	0.000
1		0.8·PP+1.35·CM1	N	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
1			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1			Vz	0.062	0.064	0.066	0.069	0.072	0.076	0.080	0.083	0.087
1			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1			Му	0.128	0.114	0.100	0.085	0.070	0.054	0.036	0.019	0.000
1			Mz	0.004	0.004	0.003	0.003	0.002	0.002	0.002	0.001	0.001
1		1.35·PP+1.35·CM1	N	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
1			Vy	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
1			Vz	0.075	0.079	0.082	0.086	0.091	0.096	0.101	0.106	0.110
1			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1			Му	0.160	0.144	0.126	0.108	0.088	0.068	0.046	0.024	0.000
1		0.9 DD 0.9 CM1 1 F O1	Mz	0.005	0.004	0.004	0.003	0.003	0.002	0.002	0.001	0.001
1		0.8·PP+0.8·CM1+1.5·Q1	N	0.025 0.010								
1			Vy	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
1			Vz Mt	0.208	0.271	0.277	0.286	0.297	0.000	0.323	0.000	0.349
1			My	0.527	0.468	0.408	0.346	0.000	0.000	0.000	0.000	0.000
1			Mz	0.022	0.020	0.400	0.015	0.203	0.210	0.147	0.006	0.004
1		1.35·PP+0.8·CM1+1.5·Q1	N N	0.022	0.025	0.017	0.015	0.015	0.010	0.005	0.000	0.004
1		1.55 11 10.0 CM111.5 Q1	Vy	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023
1			Vz	0.282	0.286	0.293	0.303	0.316	0.330	0.344	0.358	0.372
1			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1			My	0.559	0.497	0.434	0.369	0.301	0.230	0.157	0.080	0.000
1			Mz	0.022	0.020	0.018	0.015	0.013	0.011	0.008	0.006	0.004
1		0.8·PP+1.35·CM1+1.5·Q1	N	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
ı			Vy	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
ı			Vz	0.285	0.288	0.295	0.304	0.316	0.329	0.343	0.357	0.370
ı			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
i.			My	0.560	0.497	0.433	0.368	0.300	0.230	0.156	0.080	0.000
ı			Mz	0.023	0.021	0.018	0.016	0.014	0.011	0.009	0.006	0.004
ı		1.35·PP+1.35·CM1+1.5·Q1	N	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
i.			Vy	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
i.			Vz	0.299	0.303	0.311	0.321	0.334	0.349	0.364	0.379	0.394
ı			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
i					1			1				
<u>l</u> l			My	0.592	0.526	0.459	0.390	0.319	0.244	0.166	0.085	0.000

		Esfuerzos en barras,	por comb	inación		
Parra		Combinación	Esfuerzo	Posicio	ones en la	barra
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
N2/N6	Madera	0.8·PP+0.8·CM1	N	-0.025	-0.025	-0.025
			Vy	0.002	0.002	0.002
			Vz	-0.005	-0.005	-0.005
			Mt	0.000	0.000	0.000
			Му	-0.001	0.000	0.002
			Mz	0.000	0.000	-0.001

		Esfuerzos en barras,	por comb	inación		
_		Combinación		I	ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
	•	1.35·PP+0.8·CM1	N	-0.029	-0.029	-0.029
			Vy	0.002	0.002	0.002
			Vz	-0.006	-0.006	-0.005
			Mt	0.000	0.000	0.000
			Му	-0.001	0.000	0.002
			Mz	0.000	0.000	-0.001
		0.8·PP+1.35·CM1	N	-0.039	-0.039	-0.039
			Vy	0.003	0.003	0.003
			Vz	-0.008	-0.008	-0.007
			Mt	0.000	0.000	0.000
			Му	-0.002	0.000	0.003
			Mz	0.001	0.000	-0.001
		1.35·PP+1.35·CM1	N	-0.043	-0.043	-0.043
			Vy	0.003	0.003	0.003
			Vz	-0.009	-0.008	-0.008
			Mt	0.000	0.000	0.000
			Му	-0.002	0.000	0.003
			Mz	0.001	0.000	-0.001
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.206	-0.206	-0.206
			Vy	0.014	0.014	0.014
			Vz	-0.040	-0.040	-0.040
			Mt	0.001	0.001	0.001
			Му	-0.010	0.002	0.014
			Mz	0.004	-0.001	-0.005
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.210	-0.210	-0.210
			Vy	0.014	0.014	0.014
			Vz	-0.041	-0.041	-0.040
			Mt	0.001	0.001	0.001
			Му	-0.010	0.002	0.014
			Mz	0.004	-0.001	-0.005
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.220	-0.220	-0.220
			Vy	0.015	0.015	0.015
			Vz	-0.043	-0.043	-0.042
			Mt	0.001	0.001	0.001
			My	-0.011	0.002	0.015
		1 25 00 1 25 041 1 5 01	Mz	0.004	-0.001	-0.005
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.224	-0.224	-0.224
			Vy	0.015	0.015	0.015
			Vz	-0.044	-0.043	-0.043
			Mt	0.001	0.001	0.001
			My M-	-0.011	0.002	0.015
			Mz	0.004	-0.001	-0.005

		Esfuerzos en barras Combinación		binación					
					ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo		0.300 m				
N6/N3	Madera	•	N	-0.025	-0.025	-0.025			
'			Vy	-0.002	-0.002	-0.002			
			Vz	0.003	0.004	0.004			
			Mt	0.000	0.000	0.000			
			My	0.002	0.001	-0.001			
			Mz	-0.001	0.000	0.001			
		1.35·PP+0.8·CM1	N	-0.029	-0.029	-0.029			
			Vy	-0.002	-0.002	-0.002			
			Vz	0.004	0.004	0.005			
			Mt	0.000	0.000	0.000			
			My	0.002	0.001	-0.001			
			Mz	-0.001	0.000	0.001			
		0.8·PP+1.35·CM1	N	-0.039	-0.039	-0.039			
			Vy	-0.003	-0.003	-0.003			
			Vz	0.005	0.006	0.006			
			Mt	0.000	0.000	0.000			
			My	0.003	0.001	-0.001			
			Mz	-0.001	0.000	0.001			
		1.35·PP+1.35·CM1	N	-0.043	-0.043	-0.043			
			Vy	-0.004	-0.004	-0.004			
			Vz	0.006	0.006	0.007			
			Mt	0.000	0.000	0.000			
			My	0.003	0.001	-0.001			
			Mz	-0.001	0.000	0.001			
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.206	-0.206	-0.206			
		0.0 0.0 0	Vy	-0.018	-0.018	-0.018			
			Vz	0.028	0.028	0.029			
			Mt	-0.001	-0.001	-0.001			
			My	0.014	0.005	-0.003			
			Mz	-0.005	0.001	0.006			
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.210	-0.210	-0.210			
			Vy	-0.018	-0.018	-0.018			
			Vz	0.028	0.029	0.030			
			Mt	-0.001	-0.001	-0.001			
			My	0.014	0.005	-0.004			
			Mz	-0.005	0.001	0.006			
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.220	-0.220	-0.220			
			Vy	-0.019	-0.019	-0.019			
			Vz	0.030	0.030	0.031			
			Mt	-0.001	-0.001	-0.001			
			My	0.015	0.006	-0.004			
			Mz	-0.005	0.001	0.007			
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.224	-0.224	-0.224			
			Vy	-0.020	-0.020	-0.020			
			Vz	0.030	0.031	0.032			
			Mt	-0.001	-0.001	-0.001			

Esfuerzos en barras, por combinación										
Darra		Combinación	Ecfuerza	Posicio	ones en la	barra				
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m				
			Му	0.015	0.006	-0.004				
			Mz	-0.005	0.001	0.007				

	Esfuerzos en barras, por combinación											
Barra		Combinación	Esfuerzo					iones en la	barra			
Darra	Tipo	Descripción	LSIUCIZO	0.000 m		0.438 m		0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N4/N12	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
			Vz	-0.060	-0.058	-0.056	-0.054	-0.051	-0.048	-0.045	-0.042	-0.039
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.001	0.014	0.027	0.039	0.050	0.061	0.071	0.081	0.090
			Mz	-0.001	0.000	0.000	0.001	0.001	0.002	0.003	0.003	0.004
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
			Vz	-0.083	-0.080	-0.076	-0.072	-0.069	-0.064	-0.060	-0.056	-0.052
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.001	0.019	0.036	0.052	0.068	0.082	0.096	0.108	0.120
			Mz	-0.001	0.000	0.000	0.001	0.002	0.002	0.003	0.004	0.004
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vz	-0.079	-0.077	-0.075	-0.072	-0.068	-0.065	-0.061	-0.057	-0.054
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.002	0.019	0.035	0.051	0.067	0.081	0.095	0.108	0.120
			Mz	-0.001	0.000	0.001	0.001	0.002	0.003	0.004	0.005	0.006
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vz	-0.102	-0.098	-0.095	-0.091	-0.086	-0.081	-0.076	-0.071	-0.067
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.002	0.024	0.045	0.065	0.084	0.103	0.120	0.136	0.151
			Mz	-0.001	0.000	0.001	0.002	0.003	0.003	0.004	0.005	0.006
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	-0.020	-0.020	-0.020	-0.020	-0.020	-0.020	-0.020	-0.020	-0.020
			Vz	-0.309	-0.306	-0.300	-0.291	-0.280	-0.267	-0.254	-0.241	-0.228
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.010	0.077	0.144	0.208	0.271	0.330	0.387	0.442	0.493
			Mz	-0.006	-0.002	0.002	0.007	0.011	0.016	0.020	0.025	0.029
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021
			Vz	-0.331	-0.327	-0.320	-0.310	-0.297	-0.283	-0.269	-0.255	-0.241
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.010	0.082	0.153	0.222	0.288	0.352	0.412	0.469	0.524
			Mz	-0.007	-0.002	0.003	0.007	0.012	0.016	0.021	0.025	0.030
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022
			Vz	-0.328	-0.324	-0.318	-0.309	-0.297	-0.283	-0.270	-0.256	-0.243
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.011	0.082	0.152	0.221	0.287	0.351	0.411	0.469	0.524
			Mz	-0.007	-0.002	0.003	0.007	0.012	0.017	0.022	0.026	0.031
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022
			Vz	-0.350	-0.346	-0.338	-0.328	-0.315	-0.300	-0.285	-0.270	-0.255
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.011	0.087	0.162	0.235	0.305	0.372	0.436	0.497	0.554
			Mz	-0.007	-0.002	0.003	0.008	0.012	0.017	0.022	0.027	0.032

			Esf	uerzos er	barras, p	or combi	nación					
Barra		Combinación	Esfuerzo				Posici	ones en la	barra			
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N12/N8	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
			Vz	-0.031	-0.028	-0.025	-0.022	-0.019	-0.017	-0.014	-0.012	-0.010
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.090	0.096	0.102	0.107	0.112	0.115	0.119	0.122	0.124
			Mz	0.004	0.003	0.002	0.001	0.000	-0.001	-0.002	-0.003	-0.004
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005

			Esf	uerzos er	barras, į	or combi	nación					
Barra		Combinación	Esfuerzo					iones en la	barra			
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
			Vz	-0.042	-0.038	-0.034	-0.030	-0.026	-0.022	-0.018	-0.015	-0.012
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.120	0.129	0.137	0.144	0.150	0.155	0.160	0.163	0.166
			Mz	0.004	0.003	0.002	0.001	0.000	-0.002	-0.003	-0.004	-0.005
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
			Vz	-0.041	-0.037	-0.033	-0.030	-0.026	-0.023	-0.020	-0.017	-0.015
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.120	0.129	0.137	0.143	0.150	0.155	0.160	0.164	0.167
			Mz	0.006	0.004	0.003	0.001	0.000	-0.002	-0.004	-0.005	-0.007
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
			Vz	-0.052	-0.047	-0.042	-0.038	-0.033	-0.028	-0.024	-0.020	-0.017
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.151	0.162	0.172	0.181	0.188	0.195	0.201	0.205	0.209
			Mz	0.006	0.005	0.003	0.001	0.000	-0.002	-0.004	-0.006	-0.007
		0.8·PP+0.8·CM1+1.5·Q1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vy	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036
			Vz	-0.160	-0.147	-0.134	-0.122	-0.109	-0.097	-0.089	-0.083	-0.080
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.493	0.526	0.557	0.585	0.611	0.633	0.653	0.672	0.690
			Mz	0.029	0.021	0.013	0.005	-0.003	-0.011	-0.019	-0.027	-0.035
		1.35·PP+0.8·CM1+1.5·Q1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vy	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037
			Vz	-0.171	-0.157	-0.143	-0.129	-0.115	-0.103	-0.093	-0.086	-0.081
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.524	0.560	0.593	0.622	0.649	0.673	0.694	0.714	0.732
			Mz	0.030	0.022	0.014	0.005	-0.003	-0.011	-0.019	-0.027	-0.035
		0.8·PP+1.35·CM1+1.5·Q1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vy	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039
			Vz	-0.170	-0.156	-0.143	-0.129	-0.116	-0.104	-0.094	-0.088	-0.085
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.524	0.559	0.592	0.622	0.649	0.673	0.694	0.714	0.733
			Mz	0.031	0.023	0.014	0.006	-0.003	-0.011	-0.020	-0.028	-0.037
		1.35·PP+1.35·CM1+1.5·Q1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vy	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
			Vz	-0.181	-0.167	-0.152	-0.137	-0.122	-0.109	-0.099	-0.091	-0.087
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.554	0.592	0.627	0.659	0.687	0.712	0.735	0.756	0.775
			Mz	0.032	0.023	0.014	0.006	-0.003	-0.012	-0.020	-0.029	-0.038

			Fef	uerzos er	harras r	or combi	nación					
		Combinación			, bairas, p	JOI COIIIDI		ones en la	harra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N8/N10	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
,			Vy	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
			Vz	0.010	0.012	0.014	0.017	0.019	0.022	0.025	0.028	0.031
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.124	0.122	0.119	0.115	0.112	0.107	0.102	0.096	0.090
			Mz	-0.004	-0.003	-0.002	-0.001	0.000	0.001	0.002	0.003	0.004
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
			Vz	0.012	0.015	0.018	0.022	0.026	0.030	0.034	0.038	0.042
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.166	0.163	0.160	0.155	0.150	0.144	0.137	0.129	0.120
			Mz	-0.005	-0.004	-0.003	-0.002	0.000	0.001	0.002	0.003	0.004
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007
			Vz	0.015	0.017	0.020	0.023	0.026	0.030	0.033	0.037	0.041
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.167	0.164	0.160	0.155	0.150	0.143	0.137	0.129	0.120
			Mz	-0.007	-0.005	-0.004	-0.002	0.000	0.001	0.003	0.004	0.006
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008	-0.008
			Vz	0.017	0.020	0.024	0.028	0.033	0.038	0.042	0.047	0.052
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.209	0.205	0.201	0.195	0.188	0.181	0.172	0.162	0.151
			Mz	-0.007	-0.006	-0.004	-0.002	0.000	0.001	0.003	0.005	0.006
		0.8·PP+0.8·CM1+1.5·Q1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

			Esf	uerzos er	barras, p	or combi	nación					
Barra		Combinación	Esfuerzo				Posici	ones en la	barra			
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
			Vy	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036	-0.036
			Vz	0.080	0.083	0.089	0.097	0.109	0.122	0.134	0.147	0.160
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.690	0.672	0.653	0.633	0.611	0.585	0.557	0.526	0.493
			Mz	-0.035	-0.027	-0.019	-0.011	-0.003	0.005	0.013	0.021	0.029
		1.35·PP+0.8·CM1+1.5·Q1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vy	-0.037	-0.037	-0.037	-0.037	-0.037	-0.037	-0.037	-0.037	-0.037
			Vz	0.081	0.086	0.093	0.103	0.115	0.129	0.143	0.157	0.171
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.732	0.714	0.694	0.673	0.649	0.622	0.593	0.560	0.524
			Mz	-0.035	-0.027	-0.019	-0.011	-0.003	0.005	0.014	0.022	0.030
		0.8·PP+1.35·CM1+1.5·Q1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vy	-0.039	-0.039	-0.039	-0.039	-0.039	-0.039	-0.039	-0.039	-0.039
			Vz	0.085	0.088	0.094	0.104	0.116	0.129	0.143	0.156	0.170
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.733	0.714	0.694	0.673	0.649	0.622	0.592	0.559	0.524
			Mz	-0.037	-0.028	-0.020	-0.011	-0.003	0.006	0.014	0.023	0.031
		1.35·PP+1.35·CM1+1.5·Q1	N	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
			Vy	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040
			Vz	0.087	0.091	0.099	0.109	0.122	0.137	0.152	0.167	0.181
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.775	0.756	0.735	0.712	0.687	0.659	0.627	0.592	0.554
			Mz	-0.038	-0.029	-0.020	-0.012	-0.003	0.006	0.014	0.023	0.032

			Esf	uerzos er	barras, ¡	or combi	nación					
_		Combinación					Posic	iones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
N10/N3	Madera	0.8·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
			Vz	0.039	0.042	0.045	0.048	0.051	0.054	0.056	0.058	0.060
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.090	0.081	0.071	0.061	0.050	0.039	0.027	0.014	0.001
			Mz	0.004	0.003	0.003	0.002	0.001	0.001	0.000	0.000	-0.001
		1.35·PP+0.8·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
			Vz	0.052	0.056	0.060	0.064	0.069	0.072	0.076	0.079	0.083
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.120	0.108	0.096	0.082	0.068	0.052	0.036	0.019	0.001
			Mz	0.004	0.004	0.003	0.002	0.002	0.001	0.000	0.000	-0.001
		0.8·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
			Vz	0.054	0.057	0.061	0.065	0.068	0.072	0.075	0.077	0.079
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.120	0.108	0.095	0.081	0.067	0.051	0.035	0.019	0.002
			Mz	0.006	0.005	0.004	0.003	0.002	0.001	0.001	0.000	-0.001
		1.35·PP+1.35·CM1	N	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vy	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
			Vz	0.067	0.071	0.076	0.081	0.086	0.091	0.095	0.098	0.102
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.151	0.136	0.120	0.103	0.084	0.065	0.045	0.024	0.002
			Mz	0.006	0.005	0.004	0.003	0.003	0.002	0.001	0.000	-0.001
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
			Vz	0.228	0.241	0.254	0.267	0.280	0.291	0.300	0.306	0.309
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.493	0.442	0.387	0.330	0.271	0.208	0.144	0.077	0.010
			Mz	0.029	0.025	0.020	0.016	0.011	0.007	0.002	-0.002	-0.006
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021
			Vz	0.241	0.255	0.269	0.283	0.297	0.310	0.320	0.327	0.331
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.524	0.469	0.412	0.352	0.288	0.222	0.153	0.082	0.010
			Mz	0.030	0.025	0.021	0.016	0.012	0.007	0.003	-0.002	-0.007
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
			Vy	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
			Vz	0.243	0.256	0.270	0.283	0.297	0.309	0.318	0.324	0.328
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.524	0.469	0.411	0.351	0.287	0.221	0.152	0.082	0.011
			Mz	0.031	0.026	0.022	0.017	0.012	0.007	0.003	-0.002	-0.007

	Esfuerzos en barras, por combinación												
Barra		Combinación	Esfuerzo				Posici	ones en la	barra				
Dalla	Tipo	Descripción	Estuerzo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m	
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	
			Vy	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	
			Vz	0.255	0.270	0.285	0.300	0.315	0.328	0.338	0.346	0.350	
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
			Му	0.554	0.497	0.436	0.372	0.305	0.235	0.162	0.087	0.011	
Mz 0.032 0.027 0.022 0.017 0.012 0.008 0.003 -0.002								-0.007					

	Esfuerzos en barras,		por comb	inación		
_		Combinación			ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N1/N5	Madera	0.8·PP+0.8·CM1	N	-0.025	-0.025	-0.025
			Vy	-0.002	-0.002	-0.002
			Vz	-0.005	-0.005	-0.005
			Mt	0.000	0.000	0.000
			Му	-0.001	0.000	0.002
			Mz	0.000	0.000	0.001
		1.35·PP+0.8·CM1	N	-0.029	-0.029	-0.029
			Vy	-0.002	-0.002	-0.002
			Vz	-0.006	-0.006	-0.005
			Mt	0.000	0.000	0.000
			Му	-0.001	0.000	0.002
			Mz	0.000	0.000	0.001
		0.8·PP+1.35·CM1	N	-0.039	-0.039	-0.039
			Vy	-0.003	-0.003	-0.003
			Vz	-0.008	-0.008	-0.007
			Mt	0.000	0.000	0.000
			Му	-0.002	0.000	0.003
			Mz	-0.001	0.000	0.001
		1.35·PP+1.35·CM1	N	-0.043	-0.043	-0.043
			Vy	-0.003	-0.003	-0.003
			Vz	-0.009	-0.008	-0.008
			Mt	0.000	0.000	0.000
			Му	-0.002	0.000	0.003
			Mz	-0.001	0.000	0.001
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.206	-0.206	-0.206
			Vy	-0.014	-0.014	-0.014
			Vz	-0.040	-0.040	-0.039
			Mt	-0.001	-0.001	-0.001
			Му	-0.010	0.002	0.014
			Mz	-0.004	0.001	0.005
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.210	-0.210	-0.210
			Vy	-0.014	-0.014	-0.014
			Vz	-0.041	-0.041	-0.040
			Mt	-0.001	-0.001	-0.001
			Му	-0.010	0.002	0.014
			Mz	-0.004	0.001	0.005
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.220	-0.220	-0.220
			Vy	-0.015	-0.015	-0.015

		Esfuerzos en barras,	por comb	inación		
Parra		Combinación	Ecfuerze	Posicio	ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
			Vz	-0.043	-0.043	-0.042
			Mt	-0.001	-0.001	-0.001
			Му	-0.011	0.002	0.015
			Mz	-0.004	0.001	0.005
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.224	-0.224	-0.224
			Vy	-0.015	-0.015	-0.015
			Vz	-0.044	-0.043	-0.043
			Mt	-0.001	-0.001	-0.001
			Му	-0.011	0.002	0.015
			Mz	-0.004	0.001	0.005

		Esfuerzos en barras,	por comb	inación		
D		Combinación	-	Posicio	ones en la	barra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N5/N4	Madera	0.8·PP+0.8·CM1	N	-0.025	-0.025	-0.025
			Vy	0.002	0.002	0.002
			Vz	0.003	0.004	0.004
			Mt	0.000	0.000	0.000
			Му	0.002	0.001	-0.001
			Mz	0.001	0.000	-0.001
		1.35·PP+0.8·CM1	N	-0.029	-0.029	-0.029
			Vy	0.002	0.002	0.002
			Vz	0.004	0.004	0.005
			Mt	0.000	0.000	0.000
			Му	0.002	0.001	-0.001
			Mz	0.001	0.000	-0.001
		0.8·PP+1.35·CM1	N	-0.039	-0.039	-0.039
			Vy	0.003	0.003	0.003
			Vz	0.005	0.006	0.006
			Mt	0.000	0.000	0.000
			Му	0.003	0.001	-0.001
			Mz	0.001	0.000	-0.001
		1.35·PP+1.35·CM1	N	-0.043	-0.043	-0.043
			Vy	0.004	0.004	0.004
			Vz	0.006	0.006	0.007
			Mt	0.000	0.000	0.000
			Му	0.003	0.001	-0.001
			Mz	0.001	0.000	-0.001
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.206	-0.206	-0.206
			Vy	0.018	0.018	0.018
			Vz	0.028	0.028	0.029
			Mt	0.001	0.001	0.001
			Му	0.014	0.005	-0.003
			Mz	0.005	-0.001	-0.006
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.210	-0.210	-0.210

		Esfuerzos en barras,	por comb	inación		
Barra		Combinación	Esfuerzo	Posicio	ones en la	barra
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
			Vy	0.018	0.018	0.018
			Vz	0.028	0.029	0.030
			Mt	0.001	0.001	0.001
			Му	0.014	0.005	-0.004
			Mz	0.005	-0.001	-0.006
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.220	-0.220	-0.220
			Vy	0.019	0.019	0.019
			Vz	0.030	0.030	0.031
			Mt	0.001	0.001	0.001
			Му	0.015	0.006	-0.004
			Mz	0.005	-0.001	-0.007
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.224	-0.224	-0.224
			Vy	0.020	0.020	0.020
			Vz	0.030	0.031	0.032
			Mt	0.001	0.001	0.001
			Му	0.015	0.006	-0.004
			Mz	0.005	-0.001	-0.007

		Esfuerzos en barras, p	or combi	l .		
Barra		Combinación	Esfuerzo	Posiciones en la barra		
Darra	Tipo	Descripción	LSIGCIZO	0.000 m	0.300 m	0.600 m
N7/N14	Madera	0.8·PP+0.8·CM1	N	-0.008	-0.008	-0.008
			Vy	0.000	0.000	0.000
			Vz	-0.009	-0.008	-0.008
			Mt	0.000	0.000	0.000
			Му	0.000	0.002	0.005
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.009	-0.009	-0.009
			Vy	0.000	0.000	0.000
			Vz	-0.010	-0.009	-0.009
			Mt	0.000	0.000	0.000
			Му	0.000	0.002	0.005
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.012	-0.012	-0.012
			Vy	0.000	0.000	0.000
			Vz	-0.013	-0.013	-0.012
			Mt	0.000	0.000	0.000
			Му	-0.001	0.003	0.007
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.013	-0.013	-0.013
			Vy	0.000	0.000	0.000
			Vz	-0.015	-0.014	-0.013
			Mt	0.000	0.000	0.000
			Му	-0.001	0.004	0.008
			Mz	0.000	0.000	0.000

	Esfuerzos en barras, por combinación								
Barra		Combinación	Esfuerzo	Posicio	ones en la	barra			
Barra	Tipo	Descripción	LSiuei20	0.000 m	0.300 m	0.600 m			
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.061	-0.061	-0.061			
			Vy	0.000	0.000	0.000			
			Vz	-0.068	-0.068	-0.067			
			Mt	0.000	0.000	0.000			
			Му	-0.003	0.017	0.038			
			Mz	0.000	0.000	0.000			
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.062	-0.062	-0.062			
			Vy	0.000	0.000	0.000			
			Vz	-0.070	-0.069	-0.068			
			Mt	0.000	0.000	0.000			
			Му	-0.003	0.018	0.038			
			Mz	0.000	0.000	0.000			
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.065	-0.065	-0.065			
			Vy	0.000	0.000	0.000			
			Vz	-0.073	-0.072	-0.072			
			Mt	0.000	0.000	0.000			
			Му	-0.003	0.019	0.040			
			Mz	0.000	0.000	0.000			
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.066	-0.066	-0.066			
			Vy	0.000	0.000	0.000			
			Vz	-0.074	-0.073	-0.073			
			Mt	0.000	0.000	0.000			
			Му	-0.003	0.019	0.041			
			Mz	0.000	0.000	0.000			

		Esfuerzos en barras, p	or combi	inación		
Parra		Combinación	Esfuerzo	Posicio	ones en la	barra
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
N14/N8	Madera	0.8·PP+0.8·CM1	N	-0.008	-0.008	-0.008
			Vy	0.000	0.000	0.000
			Vz	0.008	0.008	0.009
			Mt	0.000	0.000	0.000
			Му	0.005	0.002	0.000
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.009	-0.009	-0.009
			Vy	0.000	0.000	0.000
			Vz	0.009	0.009	0.010
			Mt	0.000	0.000	0.000
			Му	0.005	0.002	0.000
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.012	-0.012	-0.012
			Vy	0.000	0.000	0.000
			Vz	0.012	0.013	0.013
			Mt	0.000	0.000	0.000
			Му	0.007	0.003	-0.001

		Esfuerzos en barras, p	or combi	inación		
Barra		Combinación	Esfuerzo	Posicio	ones en la	barra
Dalla	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.013	-0.013	-0.013
			Vy	0.000	0.000	0.000
			Vz	0.013	0.014	0.015
			Mt	0.000	0.000	0.000
			Му	0.008	0.004	-0.001
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.061	-0.061	-0.061
			Vy	0.000	0.000	0.000
			Vz	0.067	0.068	0.068
			Mt	0.000	0.000	0.000
			Му	0.038	0.017	-0.003
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.062	-0.062	-0.062
			Vy	0.000	0.000	0.000
			Vz	0.068	0.069	0.070
			Mt	0.000	0.000	0.000
			Му	0.038	0.018	-0.003
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.065	-0.065	-0.065
			Vy	0.000	0.000	0.000
			Vz	0.072	0.072	0.073
			Mt	0.000	0.000	0.000
			Му	0.040	0.019	-0.003
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.066	-0.066	-0.066
			Vy	0.000	0.000	0.000
			Vz	0.073	0.073	0.074
			Mt	0.000	0.000	0.000
			Му	0.041	0.019	-0.003
			Mz	0.000	0.000	0.000

		Esfuerzos en barras, p	or combi	inación		
Barra		Combinación		Posiciones en la barra		
Darra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
N9/N15	Madera	0.8·PP+0.8·CM1	N	-0.007	-0.007	-0.007
			Vy	0.000	0.000	0.000
			Vz	-0.009	-0.008	-0.008
			Mt	0.000	0.000	0.000
			Му	0.000	0.002	0.005
			Mz	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.008	-0.008	-0.008
			Vy	0.000	0.000	0.000
			Vz	-0.010	-0.009	-0.009
			Mt	0.000	0.000	0.000

		Esfuerzos en barras, p	or combi	inación		
Parra		Combinación	Esfuerzo	Posicio	ones en la	barra
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
			Му	0.000	0.002	0.005
			Mz	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.011	-0.011	-0.011
			Vy	0.000	0.000	0.000
			Vz	-0.013	-0.013	-0.012
			Mt	0.000	0.000	0.000
			Му	-0.001	0.003	0.007
			Mz	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.012	-0.012	-0.012
			Vy	0.000	0.000	0.000
			Vz	-0.015	-0.014	-0.013
			Mt	0.000	0.000	0.000
			Му	-0.001	0.004	0.008
			Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.057	-0.057	-0.057
			Vy	0.003	0.003	0.003
			Vz	-0.068	-0.068	-0.067
			Mt	0.000	0.000	0.000
			Му	-0.003	0.018	0.038
			Mz	0.000	-0.001	-0.002
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.058	-0.058	-0.058
			Vy	0.003	0.003	0.003
			Vz	-0.070	-0.069	-0.068
			Mt	0.000	0.000	0.000
			Му	-0.003	0.018	0.038
			Mz	0.000	-0.001	-0.002
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.061	-0.061	-0.061
			Vy	0.003	0.003	0.003
			Vz	-0.073	-0.072	-0.072
			Mt	0.000	0.000	0.000
			Му	-0.003	0.019	0.040
			Mz	0.000	-0.001	-0.002
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.062	-0.062	-0.062
			Vy	0.003	0.003	0.003
			Vz	-0.074	-0.073	-0.073
			Mt	0.000	0.000	0.000
			Му	-0.003	0.019	0.041
			Mz	0.000	-0.001	-0.002

Esfuerzos en barras, por combinación								
Вомио		Combinación		Posiciones en la barra				
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m		
N15/N10	Madera	0.8·PP+0.8·CM1	N	-0.007	-0.007	-0.007		
			Vy	0.000	0.000	0.000		

		Esfuerzos en barras, p	or combi	nación		
		Combinación			ones en la	harra
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m
	Про	Descripcion	Vz	0.008	0.008	0.009
			Mt	0.000	0.000	0.000
			My	0.005	0.002	0.000
			Mz	0.000	0.002	0.000
		1.35·PP+0.8·CM1	N	-0.008	-0.008	-0.008
		1.55 11 10.6 C111	Vy	0.000	0.000	0.000
			Vz	0.009	0.009	0.010
			Mt	0.000	0.000	0.000
			My	0.005	0.000	0.000
			Mz	0.003	0.002	0.000
		0.8·PP+1.35·CM1	N N	-0.011	-0.011	-0.011
		0.8·PF+1.33·CM1		0.000	0.000	
			Vy Vz	0.000	0.000	0.000 0.013
			Mt	0.012	0.013	0.013
				0.000		
			My M-		0.003	-0.001
		1.35·PP+1.35·CM1	Mz	0.000	0.000	0.000
		1.35.PP+1.35.CM1	N	-0.012	-0.012	-0.012
			Vy	0.000	0.000	0.000
			Vz	0.013	0.014	0.015
			Mt	0.000	0.000	0.000
			My M-	0.008	0.004	-0.001
		0.0 DD : 0.0 CM1 : 1 F. O1	Mz	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.057	-0.057	-0.057
			Vy	-0.003	-0.003	-0.003
			Vz	0.067	0.068	0.068
			Mt	0.000	0.000	0.000
			My M-	0.038	0.018	-0.003
		1 25 DD : 0 0 CM1 : 1 5 O1	Mz	-0.002	-0.001	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.058	-0.058 -0.003	-0.058
			Vy	-0.003		-0.003
			Vz	0.068	0.069	0.070
			Mt	0.000	0.000	0.000 -0.003
			My M=	0.038	0.018	
		0.8·PP+1.35·CM1+1.5·Q1	Mz N	-0.002		0.000
		0.0.LL1133.CM11+1.2.G1		-0.061	-0.061 -0.003	-0.061
			Vy	-0.003	1	-0.003
			Vz M+	0.072	0.072	0.073
			Mt	0.000	0.000	0.000
			My M-	0.040	0.019	-0.003
		1 2F DD 1 2F CM1 1 F C1	Mz	-0.002	-0.001	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.062	-0.062	-0.062
			Vy	-0.003	-0.003	-0.003
			Vz	0.073	0.073	0.074
			Mt	0.000	0.000	0.000
			Му	0.041	0.019	-0.003
			Mz	-0.002	-0.001	0.000

Esfuerzos en barras, por combinación							
		Combinación			ones en la	barra	
Barra	Tipo	Descripción	Esfuerzo	0.000 m		0.600 m	
N11/N13	Madera	0.8·PP+0.8·CM1	N	-0.007	-0.007	-0.007	
,	liaacia	0.0 1. 1.0.0 0.11	Vy	0.000	0.000	0.000	
			Vz	-0.009	-0.008	-0.008	
			Mt	0.000	0.000	0.000	
			My	0.000	0.002	0.005	
			Mz	0.000	0.000	0.000	
		1.35·PP+0.8·CM1	N	-0.008	-0.008	-0.008	
		1133 11 1010 0111	Vy	0.000	0.000	0.000	
			Vz	-0.010	-0.009	-0.009	
			Mt	0.000	0.000	0.000	
			My	0.000	0.002	0.005	
			Mz	0.000	0.002	0.000	
		0.8·PP+1.35·CM1	N N	-0.011	-0.011	-0.011	
		OIS IT I TISS CHIT	Vy	0.000	0.000	0.000	
			Vy	-0.013	-0.013	-0.012	
			Mt	0.000	0.000	0.000	
			My	-0.001	0.003	0.007	
			Mz	0.000	0.000	0.007	
		1.35·PP+1.35·CM1	N	-0.012	-0.012	-0.012	
		1.55-11 +1.55-611	Vy	0.000	0.000	0.000	
			Vy	-0.015	-0.014	-0.013	
			Mt	0.000	0.000	0.000	
			My	-0.001	0.004	0.008	
			Mz	0.000	0.000	0.000	
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.057	-0.057	-0.057	
		0.0 11 10.0 C11111.5 Q1	Vy	-0.003	-0.003	-0.003	
			Vz	-0.068	-0.068	-0.067	
			Mt	0.000	0.000	0.000	
			My	-0.003	0.018	0.038	
			Mz	0.000	0.001	0.002	
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.058	-0.058	-0.058	
		1.33 11 10.0 0111 11.3 Q1	Vy	-0.003	-0.003	-0.003	
			Vz	-0.070	-0.069	-0.068	
			Mt	0.000	0.000	0.000	
			My	-0.003	0.018	0.038	
			Mz	0.000	0.001	0.002	
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.061	-0.061	-0.061	
			Vy	-0.003	-0.003	-0.003	
			Vz	-0.073	-0.072	-0.072	
			Mt	0.000	0.000	0.000	
			My	-0.003	0.019	0.040	
			Mz	0.000	0.001	0.002	
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.062	-0.062	-0.062	
		1.55 · · · · 1.55 C · · · · · · · · · Q I	Vy	-0.003	-0.003	-0.003	
			Vz	-0.074	-0.073	-0.073	
			Mt	0.000	0.000	0.000	

Esfuerzos en barras, por combinación							
Darra		Combinación		Posicio	ones en la	barra	
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.300 m	0.600 m	
			Му	-0.003	0.019	0.041	
			Mz	0.000	0.001	0.002	

Esfuerzos en barras, por combinación								
_		Combinación		1	ones en la	barra		
Barra	Tipo	Descripción	Esfuerzo		0.300 m			
N13/N12	Madera	0.8·PP+0.8·CM1	N	-0.007	-0.007	-0.007		
			Vy	0.000	0.000	0.000		
			Vz	0.008	0.008	0.009		
			Mt	0.000	0.000	0.000		
			Му	0.005	0.002	0.000		
			Mz	0.000	0.000	0.000		
		1.35·PP+0.8·CM1	N	-0.008	-0.008	-0.008		
			Vy	0.000	0.000	0.000		
			Vz	0.009	0.009	0.010		
			Mt	0.000	0.000	0.000		
			Му	0.005	0.002	0.000		
			Mz	0.000	0.000	0.000		
		0.8·PP+1.35·CM1	N	-0.011	-0.011	-0.011		
			Vy	0.000	0.000	0.000		
			Vz	0.012	0.013	0.013		
			Mt	0.000	0.000	0.000		
			Му	0.007	0.003	-0.001		
			Mz	0.000	0.000	0.000		
		1.35·PP+1.35·CM1	N	-0.012	-0.012	-0.012		
			Vy	0.000	0.000	0.000		
			Vz	0.013	0.014	0.015		
			Mt	0.000	0.000	0.000		
			Му	0.008	0.004	-0.001		
			Mz	0.000	0.000	0.000		
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.057	-0.057	-0.057		
			Vy	0.003	0.003	0.003		
			Vz	0.067	0.068	0.068		
			Mt	0.000	0.000	0.000		
			My	0.038	0.018	-0.003		
		1 25 DD 0 0 CM1 1 5 O1	Mz	0.002	0.001	0.000		
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.058	-0.058	-0.058		
			Vy	0.003	0.003	0.003		
			Vz	0.068	0.069	0.070		
			Mt	0.000	0.000	0.000		
			My Mz	0.038	0.018	-0.003		
		0.0.DD 1.25.CM1 1.5.C1	Mz	0.002 -0.061	0.001	0.000		
		0.8·PP+1.35·CM1+1.5·Q1	N Vy	0.003	-0.061 0.003	-0.061		
			Vy Vz	0.003	0.003	0.003 0.073		

		Esfuerzos en barras, p	or combi	nación		
Darra		Combinación	Esfuerzo	Posicio	ones en la	barra
Barra	Tipo	Descripción	Estuerzo	0.000 m	0.300 m	0.600 m
			Mt	0.000	0.000	0.000
			Му	0.040	0.019	-0.003
			Mz	0.002	0.001	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.062	-0.062	-0.062
			Vy	0.003	0.003	0.003
			Vz	0.073	0.073	0.074
			Mt	0.000	0.000	0.000
			Му	0.041	0.019	-0.003
			Mz	0.002	0.001	0.000

			Fef	illerzos er	n barras, p	or combi	nación					
		Combinación	LSI	uerzos er	i vaitas, p	JOI COIIIDI		ones en la	harra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N4/N11		0.8·PP+0.8·CM1	N	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
,			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.006	-0.005	-0.004	-0.002	-0.001	0.001	0.003	0.004	0.005
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.002	0.000	0.001	0.002	0.002	0.002	0.001	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.006	-0.005	-0.002	-0.001	0.001	0.003	0.005	0.006
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.002	0.000	0.001	0.002	0.003	0.003	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.010	-0.008	-0.006	-0.003	-0.001	0.001	0.004	0.006	0.008
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.003	-0.001	0.001	0.003	0.003	0.003	0.002	0.001	-0.001
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.011	-0.009	-0.007	-0.003	-0.001	0.001	0.005	0.007	0.009
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.003	-0.001	0.001	0.003	0.004	0.004	0.002	0.001	-0.001
		2.22.22.22.4.5.24	Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.051	-0.042	-0.033	-0.015	-0.006	0.003	0.022	0.031	0.040
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My Mz	-0.015 0.000	-0.005 0.000	0.003	0.013 0.000	0.015 0.000	0.016 0.000	0.010 0.000	0.005 0.000	-0.003 0.000
		1.35·PP+0.8·CM1+1.5·Q1	N N	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
		1.55***+0.6*CM1+1.5*Q1	Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.052	-0.043	-0.034	-0.015	-0.006	0.004	0.022	0.031	0.041
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.015	-0.005	0.003	0.014	0.016	0.016	0.011	0.005	-0.003
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.055	-0.045	-0.035	-0.016	-0.006	0.004	0.023	0.033	0.042
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.016	-0.005	0.003	0.014	0.016	0.017	0.011	0.005	-0.003
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.056	-0.046	-0.036	-0.016	-0.006	0.004	0.024	0.034	0.043
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.016	-0.005	0.003	0.014	0.017	0.017	0.011	0.005	-0.003
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Esf	uerzos er	barras, p	or combi	nación					
Parra		Combinación	Esfuerzo				Posici	ones en la	barra			
Barra	Tipo	Descripción	Esiderzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N11/N8	Madera	0.8·PP+0.8·CM1	N	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.006	-0.005	-0.004	-0.001	0.000	0.001	0.004	0.005	0.006
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.001	0.000	0.001	0.002	0.002	0.002	0.001	0.000	-0.001
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.005	-0.004	-0.001	0.000	0.001	0.004	0.005	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.001	0.000	0.001	0.003	0.003	0.003	0.001	0.000	-0.001
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.009	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007	0.009
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.001	0.001	0.002	0.003	0.004	0.003	0.002	0.001	-0.001
		1.05.00	Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.010	-0.008	-0.006	-0.002	0.000	0.002	0.006	0.008	0.010
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.001	0.001	0.002	0.004	0.004	0.004	0.002	0.001	-0.001
		0.8·PP+0.8·CM1+1.5·Q1	Mz N	0.000	0.000	0.000 0.118	0.000 0.118	0.000	0.000	0.000	0.000	0.000
		0.8.PP+0.8.CM1+1.5.Q1	Vy	0.000	0.000	0.000	0.000	0.000	0.118	0.000	0.118 0.000	0.000
			Vy Vz	-0.046	-0.036	-0.027	-0.009	0.000	0.000	0.000	0.000	0.000
			Mt	0.000	0.000	0.000	0.000	0.000	0.009	0.027	0.000	0.000
			My	-0.006	0.003	0.010	0.000	0.000	0.000	0.000	0.003	-0.006
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N N	0.121	0.121	0.121	0.121	0.121	0.121	0.121	0.121	0.121
		1.55 6.5 6 1.5 Q1	Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.047	-0.037	-0.028	-0.009	0.000	0.009	0.028	0.037	0.047
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.006	0.003	0.010	0.018	0.019	0.018	0.010	0.003	-0.006
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.126
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.049	-0.039	-0.029	-0.010	0.000	0.010	0.029	0.039	0.049
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.006	0.003	0.010	0.018	0.020	0.018	0.010	0.003	-0.006
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.050	-0.040	-0.030	-0.010	0.000	0.010	0.030	0.040	0.050
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.006	0.003	0.010	0.019	0.020	0.019	0.010	0.003	-0.006
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Es	fuerzos e	n barras,	por comb	inación					
Barra		Combinación	Esfuerzo				Posici	ones en la	barra			
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N8/N9	Madera	0.8·PP+0.8·CM1	N	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.006	-0.005	-0.004	-0.001	0.000	0.001	0.004	0.005	0.006
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.001	0.000	0.001	0.002	0.002	0.002	0.001	0.000	-0.001
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.007	-0.005	-0.004	-0.001	0.000	0.001	0.004	0.005	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.001	0.000	0.001	0.003	0.003	0.003	0.001	0.000	-0.001
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.009	-0.007	-0.005	-0.002	0.000	0.002	0.005	0.007	0.009
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.001	0.001	0.002	0.003	0.004	0.003	0.002	0.001	-0.001

			Es	fuerzos e	n barras,	por comb	inación					
Barra		Combinación	Esfuerzo				Posici	ones en la	barra			
Darra	Tipo	Descripción	Estuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.010	-0.008	-0.006	-0.002	0.000	0.002	0.006	0.008	0.010
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.001	0.001	0.002	0.004	0.004	0.004	0.002	0.001	-0.001
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.046	-0.036	-0.027	-0.009	0.000	0.009	0.027	0.036	0.046
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.006	0.003	0.010	0.017	0.018	0.017	0.010	0.003	-0.006
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	0.121	0.121	0.121	0.121	0.121	0.121	0.121	0.121	0.121
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.047	-0.037	-0.028	-0.009	0.000	0.009	0.028	0.037	0.047
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.006	0.003	0.010	0.018	0.019	0.018	0.010	0.003	-0.006
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.126
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.049	-0.039	-0.029	-0.010	0.000	0.010	0.029	0.039	0.049
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.006	0.003	0.010	0.018	0.020	0.018	0.010	0.003	-0.006
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.050	-0.040	-0.030	-0.010	0.000	0.010	0.030	0.040	0.050
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.006	0.003	0.010	0.019	0.020	0.019	0.010	0.003	-0.006
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Es	fuerzos e	n barras,	por comb	inación					
_		Combinación					Posici	ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N9/N3	Madera	0.8·PP+0.8·CM1	N	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.005	-0.004	-0.003	-0.001	0.001	0.002	0.004	0.005	0.006
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.001	0.002	0.002	0.002	0.001	0.000	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.006	-0.005	-0.003	-0.001	0.001	0.002	0.005	0.006	0.007
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.003	0.003	0.002	0.001	0.000	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.008	-0.006	-0.004	-0.001	0.001	0.003	0.006	0.008	0.010
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.001	0.001	0.002	0.003	0.003	0.003	0.001	-0.001	-0.003
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.009	-0.007	-0.005	-0.001	0.001	0.003	0.007	0.009	0.011
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.001	0.001	0.002	0.004	0.004	0.003	0.001	-0.001	-0.003
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.040	-0.031	-0.022	-0.003	0.006	0.015	0.033	0.042	0.051
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.003	0.005	0.010	0.016	0.015	0.013	0.003	-0.005	-0.015
		1 05 00 0 0 0 11 1 5 5 5	Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.041	-0.031	-0.022	-0.004	0.006	0.015	0.034	0.043	0.052
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Es	fuerzos e	n barras,	por comb	inación					
Вочно		Combinación	Enfrance				Posici	ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
			My	-0.003	0.005	0.011	0.016	0.016	0.014	0.003	-0.005	-0.015
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.042	-0.033	-0.023	-0.004	0.006	0.016	0.035	0.045	0.055
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.003	0.005	0.011	0.017	0.016	0.014	0.003	-0.005	-0.016
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.043	-0.034	-0.024	-0.004	0.006	0.016	0.036	0.046	0.056
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.003	0.005	0.011	0.017	0.017	0.014	0.003	-0.005	-0.016
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Esf	uerzos en	barras, p	or combi	nación					
		Combinación						iones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N13/N14	Madera	0.8·PP+0.8·CM1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.008	-0.005	-0.003	-0.002	0.000	0.002	0.003	0.005	0.008
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.009	-0.006	-0.004	-0.002	0.000	0.002	0.004	0.006	0.009
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.012	-0.009	-0.005	-0.002	0.000	0.002	0.005	0.009	0.012
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.003	0.004	0.005	0.004	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007	-0.007
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.013	-0.009	-0.006	-0.003	0.000	0.003	0.006	0.009	0.013
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.004	0.005	0.005	0.005	0.004	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.037	-0.037	-0.037	-0.037	-0.037	-0.037	-0.037	-0.037	-0.037
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.067	-0.046	-0.028	-0.013	0.000	0.013	0.028	0.046	0.067
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.002	0.011	0.019	0.023	0.024	0.023	0.019	0.011	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.038	-0.038	-0.038	-0.038	-0.038	-0.038	-0.038	-0.038	-0.038
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.068	-0.047	-0.029	-0.013	0.000	0.013	0.029	0.047	0.068
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.002	0.011	0.019	0.023	0.025	0.023	0.019	0.011	-0.002
		2.2.2.4.2.2.4.4.2.2.4	Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.072	-0.050	-0.030	-0.014	0.000	0.014	0.030	0.050	0.072
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.002	0.011	0.020	0.025	0.026	0.025	0.020	0.011	-0.002
		1 2F DD : 1 2F CM1 : 1 F C1	Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N V	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.073	-0.050	-0.030	-0.014	0.000	0.014	0.031	0.050	0.073
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My M-	-0.002	0.011	0.020	0.025	0.026	0.025	0.020	0.011	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Nadera				Esf	uerzos en	barras, p	or combi	nación					
N14/N15	Parra		Combinación	Ecfuerzo				Posici	ones en la	barra			
Vy 0.000	Darra	Tipo	Descripción	LSiueizo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
V2	N14/N15	Madera	0.8·PP+0.8·CM1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Mt				Vy			0.000	0.000	0.000	0.000	0.000	0.000	I
My				Vz	-0.008	-0.005	-0.003	-0.002	0.000	0.002	0.003	0.005	0.008
Nz				Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1.35-PP+0.8-CM1				My	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
Vy											0.000		
V2			1.35·PP+0.8·CM1	I					1		I		I
Mt				1 '					1		I		l
My				1					1		I		I
Name				1					1		I		I
0.8-PP+1.35-CM1				1					1		I		I
Vy													
Vz			0.8·PP+1.35·CM1	I					1		I		I
Mt						1							
My				1					1		I		l
Mz				1							I		I
1.35-PP+1.35-CM1				1 '					1		I		l
Vy													
Vz			1.35·PP+1.35·CM1	I					1		I		l
Mt						1			1		1		l
My				1					1		I		l
NZ				1					1		I		l
0.8-PP+0.8-CM1+1.5-Q1				1					1		I		I
Vy			0.0 00.0 0.0 0044 : 4.5.04										
Vz			0.8-PP+0.8-CM1+1.5-Q1						1		I		l
Mt						1			1		l		I
My				1					1		I		I
Mz				I					1		I		I
1.35-PP+0.8·CM1+1.5·Q1				1					1		l		l
Vy			1 2E DD 0 9 CM1 1 E O1										
Vz			1.33.FF+0.8.CM1+1.3.Q1	1					1		l		l
Mt				1 '		1			1		l		l
My						1					l		l
Mz				1					1		I		l
0.8·PP+1.35·CM1+1.5·Q1 N -0.040 -0.04				1 '					1		I		I
Vy			0.8-PP+1.35-CM1+1 5-O1										
Vz			0.0 11 11.05 Chi1 11.5 Q1	1		1			1		l		
Mt				1 '					1		I		I
My						1			1		1		
Mz				1					1		I		I
1.35-PP+1.35·CM1+1.5·Q1 N -0.040 -0.0				1 '					1		I		I
Vy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0.002 0.025 0.026 0.025 0.020 0.011 -0.002			1.35·PP+1.35·CM1+1.5·O1										
Vz -0.073 -0.050 -0.030 -0.014 0.000 0.014 0.031 0.050 0.073 Mt 0.000 0.001 -0.002			Q1			1			1		1		l
Mt 0.000 0.				1 '					1		I		l
My -0.002 0.011 0.020 0.025 0.026 0.025 0.020 0.011 -0.002				1					1		I		l
				I					1		I		I
				Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Esf	uerzos er	barras, p	or combi	nación					
Barra		Combinación	Esfuerzo				Posici	ones en la	barra			
Dalla	Tipo	Descripción	LSIUEIZO	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
N15/N6	Madera	0.8·PP+0.8·CM1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.008	-0.005	-0.003	-0.002	0.000	0.002	0.003	0.005	0.008
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.009	-0.006	-0.004	-0.002	0.000	0.002	0.004	0.006	0.009
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.012	-0.009	-0.005	-0.002	0.000	0.002	0.005	0.009	0.012
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.003	0.004	0.005	0.004	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Esf	uerzos er	barras, į	or combi	nación					
_		Combinación					Posici	ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
		1.35·PP+1.35·CM1	N	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.013	-0.009	-0.006	-0.003	0.000	0.003	0.006	0.009	0.013
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.002	0.004	0.005	0.005	0.005	0.004	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.067	-0.046	-0.028	-0.013	0.000	0.013	0.028	0.046	0.067
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.002	0.011	0.019	0.023	0.025	0.023	0.019	0.011	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.068	-0.047	-0.029	-0.013	0.000	0.013	0.029	0.047	0.068
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.002	0.011	0.019	0.024	0.025	0.024	0.019	0.011	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.034	-0.034	-0.034	-0.034	-0.034	-0.034	-0.034	-0.034	-0.034
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.072	-0.050	-0.030	-0.014	0.000	0.014	0.030	0.050	0.072
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.002	0.012	0.020	0.025	0.026	0.025	0.020	0.012	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.073	-0.050	-0.030	-0.014	0.000	0.014	0.031	0.050	0.073
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.002	0.012	0.020	0.025	0.027	0.025	0.020	0.012	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

			Esf	uerzos er	barras, p	or combi	nación					
		Combinación					Posici	ones en la	barra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N5/N13	Madera	0.8·PP+0.8·CM1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.008	-0.005	-0.003	-0.002	0.000	0.002	0.003	0.005	0.008
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1	N	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.009	-0.006	-0.004	-0.002	0.000	0.002	0.004	0.006	0.009
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.001	0.002	0.003	0.003	0.003	0.002	0.001	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1	N	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.012	-0.009	-0.005	-0.002	0.000	0.002	0.005	0.009	0.012
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.002	0.003	0.004	0.005	0.004	0.003	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1	N	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.013	-0.009	-0.006	-0.003	0.000	0.003	0.006	0.009	0.013
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	0.000	0.002	0.004	0.005	0.005	0.005	0.004	0.002	0.000
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+0.8·CM1+1.5·Q1	N	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032	-0.032
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.067	-0.046	-0.028	-0.013	0.000	0.013	0.028	0.046	0.067
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.002	0.011	0.019	0.023	0.025	0.023	0.019	0.011	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+0.8·CM1+1.5·Q1	N	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.068	-0.047	-0.029	-0.013	0.000	0.013	0.029	0.047	0.068
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.002	0.011	0.019	0.024	0.025	0.024	0.019	0.011	-0.002

puente 7 a 6 m Fecha: 03/07/25

			Ecf	uerzee er	barras, p	or combi	nación					
		Combinación	LSI	uerzos er	i vaitas, p	or combi		ones en la	harra			
Barra	Tipo	Descripción	Esfuerzo	0.000 m	0.219 m	0.438 m			1.094 m	1.313 m	1.531 m	1.750 m
	Про	Descripcion										
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		0.8·PP+1.35·CM1+1.5·Q1	N	-0.034	-0.034	-0.034	-0.034	-0.034	-0.034	-0.034	-0.034	-0.034
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.072	-0.050	-0.030	-0.014	0.000	0.014	0.030	0.050	0.072
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			My	-0.002	0.012	0.020	0.025	0.026	0.025	0.020	0.012	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		1.35·PP+1.35·CM1+1.5·Q1	N	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035
			Vy	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Vz	-0.073	-0.050	-0.030	-0.014	0.000	0.014	0.031	0.050	0.073
			Mt	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Му	-0.002	0.012	0.020	0.025	0.027	0.025	0.020	0.012	-0.002
			Mz	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

2.3.2.1.3. Envolventes

	Envolventes de los esfuerzos en barras										
			Envolv	rentes de	los esfue	rzos en b	arras				
Parra	Tipo de combinación	Ecfuerzo				Posici	ones en la	barra			
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N1/N11	Madera	N _{mín}	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
		N _{máx}	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
		Vy _{mín}	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011	-0.011
		Vy _{máx}	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		Vz_{min}	-0.394	-0.379	-0.364	-0.349	-0.334	-0.321	-0.311	-0.303	-0.299
		Vz _{máx}	-0.065	-0.063	-0.060	-0.057	-0.054	-0.051	-0.049	-0.047	-0.045
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.000	0.014	0.027	0.040	0.052	0.064	0.075	0.085	0.095
		My _{máx}	0.000	0.085	0.166	0.244	0.319	0.390	0.459	0.526	0.592
		Mz_{min}	0.000	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.003
		Mz _{máx}	0.004	0.006	0.009	0.011	0.014	0.016	0.019	0.021	0.024

			Envolv	entes de	los esfue	rzos en b	arras				
_						Posici	ones en la	barra			
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N11/N7	Madera	N _{mín}	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027
		N _{máx}	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
		Vy _{mín}	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
		Vy _{máx}	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033
		Vz_{min}	-0.132	-0.127	-0.120	-0.110	-0.096	-0.081	-0.067	-0.052	-0.037
		Vz _{máx}	-0.025	-0.023	-0.021	-0.018	-0.016	-0.013	-0.010	-0.007	-0.004
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.095	0.100	0.105	0.109	0.113	0.116	0.119	0.121	0.122
		My _{máx}	0.592	0.621	0.648	0.673	0.695	0.715	0.731	0.744	0.754
		Mz_{min}	0.003	0.002	0.001	0.000	-0.005	-0.012	-0.019	-0.027	-0.034
		Mz _{máx}	0.024	0.017	0.009	0.002	-0.001	-0.001	-0.002	-0.003	-0.004

			Envol	ventes de	los esfu	erzos en l	parras				
Barra	Tino do combinación	Esfuerzo				Posici	ones en la	barra			
Darra	Tipo de combinación	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N7/N9	Madera	N _{mín}	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027	-0.027
		N _{máx}	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
		Vy_{min}	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033	-0.033
		$Vy_{máx}$	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
		Vz_{min}	0.004	0.007	0.010	0.013	0.016	0.018	0.021	0.023	0.025
		$Vz_{máx}$	0.037	0.052	0.067	0.081	0.096	0.109	0.120	0.127	0.132
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.122	0.121	0.119	0.116	0.113	0.109	0.105	0.100	0.095
		My _{máx}	0.754	0.744	0.731	0.715	0.695	0.673	0.648	0.621	0.592

	Envolventes de los esfuerzos en barras												
Barra Tipo de combinación Esfuerzo Posiciones en la barra													
Darra	Tipo de combinación	Estuerzo	0.000 m 0.219 m 0.438 m 0.656 m 0.875 m 1.094 m 1.313 m 1.531 m 1.750 m										
		Mz _{mín}	-0.034	-0.027	-0.019	-0.012	-0.005	0.000	0.001	0.002	0.003		
	Mz _{máx} -0.004 -0.003 -0.002 -0.001 -0.001 0.002 0.009 0.017 0.024												

	Envolventes de los esfuerzos en barras										
		1	Envoi	ventes a	e ios estu						
Barra	Tipo de combinación	Esfuerzo				Posici	ones en la	barra			
Dalla	Tipo de combinación	LSiueizo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
N9/N2	Madera	N _{mín}	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
		N _{máx}	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
		Vy_{min}	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vy _{máx}	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011
		Vz_{min}	0.045	0.047	0.049	0.051	0.054	0.057	0.060	0.063	0.065
		Vz _{máx}	0.299	0.303	0.311	0.321	0.334	0.349	0.364	0.379	0.394
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.095	0.085	0.075	0.064	0.052	0.040	0.027	0.014	0.000
		My _{máx}	0.592	0.526	0.459	0.390	0.319	0.244	0.166	0.085	0.000
		Mz _{mín}	0.003	0.003	0.002	0.002	0.002	0.001	0.001	0.001	0.000
		Mz _{máx}	0.024	0.021	0.019	0.016	0.014	0.011	0.009	0.006	0.004

	Envolventes de	los esfu	erzos en	barras	
Barra	Tipo de combinación	Ecfuerzo	Posicio	ones en la	barra
Barra	Tipo de combinación	LSIUEIZO	0.000 m	0.300 m	0.600 m
N2/N6	Madera	N_{min}	-0.224	-0.224	-0.224
		$N_{máx}$	-0.025	-0.025	-0.025
		Vy_{min}	0.002	0.002	0.002
		$Vy_{máx}$	0.015	0.015	0.015
		Vz_{min}	-0.044	-0.043	-0.043
		$Vz_{m\acute{a}x}$	-0.005	-0.005	-0.005
		Mt_{min}	0.000	0.000	0.000
		$Mt_{máx}$	0.001	0.001	0.001
		My_{min}	-0.011	0.000	0.002
		$My_{máx}$	-0.001	0.002	0.015
		Mz_{min}	0.000	-0.001	-0.005
		$Mz_{máx}$	0.004	0.000	-0.001

	Envolventes de	los esfue	erzos en	barras	
Barra	Tipo de combinación	Ecfuerze	Posicio	ones en la	barra
Barra	ripo de combinación	LSIUEIZO	0.000 m	0.300 m	0.600 m
N6/N3	Madera	N_{min}	-0.224	-0.224	-0.224
		$N_{máx}$	-0.025	-0.025	-0.025
		Vy_{min}	-0.020	-0.020	-0.020
		$Vy_{máx}$	-0.002	-0.002	-0.002
		Vz_{min}	0.003	0.004	0.004
		$Vz_{m\acute{a}x}$	0.030	0.031	0.032
		Mt_{min}	-0.001	-0.001	-0.001
		$Mt_{m\acute{a}x}$	0.000	0.000	0.000
		My_{min}	0.002	0.001	-0.004
		$My_{máx}$	0.015	0.006	-0.001
		Mz_{min}	-0.005	0.000	0.001
		$Mz_{máx}$	-0.001	0.001	0.007

			Envolv	ventes de	los esfue	rzos en b	arras				
Вомио	Tino do combinación	Fofus ====				Posici	ones en la	barra			
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N4/N12	Madera	N _{mín}	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		N _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy _{mín}	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022
		Vy _{máx}	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
		Vz_{min}	-0.350	-0.346	-0.338	-0.328	-0.315	-0.300	-0.285	-0.270	-0.255
		Vz _{máx}	-0.060	-0.058	-0.056	-0.054	-0.051	-0.048	-0.045	-0.042	-0.039
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.001	0.014	0.027	0.039	0.050	0.061	0.071	0.081	0.090
		My _{máx}	0.011	0.087	0.162	0.235	0.305	0.372	0.436	0.497	0.554
		Mz _{mín}	-0.007	-0.002	0.000	0.001	0.001	0.002	0.003	0.003	0.004
		Mz _{máx}	-0.001	0.000	0.003	0.008	0.012	0.017	0.022	0.027	0.032

			Envolv	ventes de	los esfue	rzos en b	arras				
Barra	Tipo de combinación	Esfuerzo				Posici	ones en la	barra			
Darra	Tipo de combinación	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N12/N8	Madera	N _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		N _{máx}	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vy_{min}	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
		$Vy_{máx}$	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
		Vz_{min}	-0.181	-0.167	-0.152	-0.137	-0.122	-0.109	-0.099	-0.091	-0.087
		$Vz_{máx}$	-0.031	-0.028	-0.025	-0.022	-0.019	-0.017	-0.014	-0.012	-0.010
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.090	0.096	0.102	0.107	0.112	0.115	0.119	0.122	0.124
		My _{máx}	0.554	0.592	0.627	0.659	0.687	0.712	0.735	0.756	0.775
		Mz_{min}	0.004	0.003	0.002	0.001	-0.003	-0.012	-0.020	-0.029	-0.038
		Mz _{máx}	0.032	0.023	0.014	0.006	0.000	-0.001	-0.002	-0.003	-0.004

	Envolventes de los esfuerzos en barras										
			Envol	ventes de	los esfue	rzos en b	arras				
Вамиа	Tipo de combinación	Eafricana				Posici	ones en la	barra			
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m
N8/N10	Madera	N _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		N _{máx}	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		Vy _{mín}	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040
		Vy _{máx}	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
		Vz_{min}	0.010	0.012	0.014	0.017	0.019	0.022	0.025	0.028	0.031
		Vz _{máx}	0.087	0.091	0.099	0.109	0.122	0.137	0.152	0.167	0.181
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.124	0.122	0.119	0.115	0.112	0.107	0.102	0.096	0.090
		My _{máx}	0.775	0.756	0.735	0.712	0.687	0.659	0.627	0.592	0.554
		Mz _{mín}	-0.038	-0.029	-0.020	-0.012	-0.003	0.001	0.002	0.003	0.004
		Mz _{máx}	-0.004	-0.003	-0.002	-0.001	0.000	0.006	0.014	0.023	0.032

Envolventes de los esfuerzos en barras											
			Envolv	entes de	los esfue	rzos en b	arras				
Barra	Tipo de combinación	Esfuerzo				Posici	ones en la	barra			
Dalla	Tipo de combinación	ESTUELZO	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
N10/N3	Madera	N _{mín}	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
		N _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy _{mín}	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
		Vy _{máx}	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022
		Vz _{mín}	0.039	0.042	0.045	0.048	0.051	0.054	0.056	0.058	0.060
		Vz _{máx}	0.255	0.270	0.285	0.300	0.315	0.328	0.338	0.346	0.350
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	0.090	0.081	0.071	0.061	0.050	0.039	0.027	0.014	0.001
		My _{máx}	0.554	0.497	0.436	0.372	0.305	0.235	0.162	0.087	0.011
		Mz _{mín}	0.004	0.003	0.003	0.002	0.001	0.001	0.000	-0.002	-0.007

Envolventes de los esfuerzos en barras											
Barra	Tipo de combinación	Esfuerzo	Posiciones en la barra								
			0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m
		Mz _{máx}	0.032	0.027	0.022	0.017	0.012	0.008	0.003	0.000	-0.001

Envolventes de los esfuerzos en barras							
Barra	Tipo de combinación	Ecfuerze	Posicio	Posiciones en la barra			
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m		
N1/N5	Madera	N_{min}	-0.224	-0.224	-0.224		
		$N_{máx}$	-0.025	-0.025	-0.025		
		Vy_{min}	-0.015	-0.015	-0.015		
		$Vy_{máx}$	-0.002	-0.002	-0.002		
		Vz_{min}	-0.044	-0.043	-0.043		
		$Vz_{m\acute{a}x}$	-0.005	-0.005	-0.005		
		Mt_{min}	-0.001	-0.001	-0.001		
		Mt _{máx}	0.000	0.000	0.000		
		My_{min}	-0.011	0.000	0.002		
		$My_{máx}$	-0.001	0.002	0.015		
		Mz_{min}	-0.004	0.000	0.001		
		$Mz_{máx}$	0.000	0.001	0.005		

Envolventes de los esfuerzos en barras							
Barra	Tipo de combinación	Esfuerzo	Posiciones en la barra				
Dalla	Tipo de combinación		0.000 m	0.300 m	0.600 m		
N5/N4	Madera	N_{min}	-0.224	-0.224	-0.224		
		$N_{máx}$	-0.025	-0.025	-0.025		
		Vy_{min}	0.002	0.002	0.002		
		$Vy_{máx}$	0.020	0.020	0.020		
		Vz_{min}	0.003	0.004	0.004		
		$Vz_{m\acute{a}x}$	0.030	0.031	0.032		
		Mt_{min}	0.000	0.000	0.000		
		Mt _{máx}	0.001	0.001	0.001		
		My _{mín}	0.002	0.001	-0.004		
		$My_{máx}$	0.015	0.006	-0.001		
		Mz_{min}	0.001	-0.001	-0.007		
		$Mz_{máx}$	0.005	0.000	-0.001		

Envolventes de los esfuerzos en barras								
Down	Tino de combinación	Esfuerzo	Posiciones en la barra					
Barra	Tipo de combinación		0.000 m	0.300 m	0.600 m			
N7/N14	Madera	N_{min}	-0.066	-0.066	-0.066			
		$N_{máx}$	-0.008	-0.008	-0.008			
		Vy_{min}	0.000	0.000	0.000			
		$Vy_{máx}$	0.000	0.000	0.000			
		Vz_{min}	-0.074	-0.073	-0.073			
		$Vz_{\text{máx}}$	-0.009	-0.008	-0.008			
		Mt_{min}	0.000	0.000	0.000			
		Mt _{máx}	0.000	0.000	0.000			
		My _{mín}	-0.003	0.002	0.005			

	Envolventes de	los esfue	rzos en l	oarras			
Parra	Tino do combinación	Ecfuerze	Posiciones en la barra				
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m		
		$My_{\text{máx}}$	0.000	0.019	0.041		
		Mz_{min}	0.000	0.000	0.000		
		$Mz_{máx}$	0.000	0.000	0.000		

	Envolventes de	los esfue	rzos en l	arras	
Barra	Tipo de combinación	Ecfuerze	Posicio	ones en la	barra
Barra	Tipo de combinación	LSiueizo	0.000 m	0.300 m	0.600 m
N14/N8	Madera	N_{min}	-0.066	-0.066	-0.066
		$N_{máx}$	-0.008	-0.008	-0.008
		Vy_{min}	0.000	0.000	0.000
		$Vy_{m\acute{a}x}$	0.000	0.000	0.000
		Vz_{min}	0.008	0.008	0.009
		$Vz_{\text{máx}}$	0.073	0.073	0.074
		Mt_{min}	0.000	0.000	0.000
		$Mt_{m\acute{a}x}$	0.000	0.000	0.000
		My_{min}	0.005	0.002	-0.003
		$My_{\text{máx}}$	0.041	0.019	0.000
		Mz_{min}	0.000	0.000	0.000
		$Mz_{máx}$	0.000	0.000	0.000

	Envolventes de	los esfue	rzos en b	parras	
Parra	Tino do combinación	Ecfuerzo	Posicio	ones en la	barra
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m
N9/N15	Madera	N_{min}	-0.062	-0.062	-0.062
		$N_{máx}$	-0.007	-0.007	-0.007
		Vy_{min}	0.000	0.000	0.000
		$Vy_{m\acute{a}x}$	0.003	0.003	0.003
		Vz_{min}	-0.074	-0.073	-0.073
		$Vz_{\text{máx}}$	-0.009	-0.008	-0.008
		Mt_{min}	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000
		My_{min}	-0.003	0.002	0.005
		$My_{\text{máx}}$	0.000	0.019	0.041
		Mz_{min}	0.000	-0.001	-0.002
		$Mz_{máx}$	0.000	0.000	0.000

	Envolventes de l	os esfuei	rzos en b	arras	
Darra	Tino do combinación	Ecfuerzo	Posicio	ones en la	barra
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m
N15/N10	Madera	N_{min}	-0.062	-0.062	-0.062
		$N_{máx}$	-0.007	-0.007	-0.007
		Vy_{min}	-0.003	-0.003	-0.003
		Vy _{máx}	0.000	0.000	0.000
		Vz_{min}	0.008	0.008	0.009
		$Vz_{\text{máx}}$	0.073	0.073	0.074

	Envolventes de l	os esfuei	rzos en b	arras	
Parra	Tino do combinación	Ecfuerzo	Posicio	ones en la	barra
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m
		Mt_{min}	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000
		My_{min}	0.005	0.002	-0.003
		$My_{máx}$	0.041	0.019	0.000
		Mz_{min}	-0.002	-0.001	0.000
		$Mz_{máx}$	0.000	0.000	0.000

	Envolventes de l	os esfuei	zos en b	arras	
Barra	Tipo do combinación	Ecfuerze	Posicio	ones en la	barra
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m
N11/N13	Madera	N_{min}	-0.062	-0.062	-0.062
		$N_{máx}$	-0.007	-0.007	-0.007
		Vy_{min}	-0.003	-0.003	-0.003
		$Vy_{m\acute{a}x}$	0.000	0.000	0.000
		Vz_{min}	-0.074	-0.073	-0.073
		$Vz_{\text{máx}}$	-0.009	-0.008	-0.008
		Mt_{min}	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000
		My_{min}	-0.003	0.002	0.005
		$My_{máx}$	0.000	0.019	0.041
		Mz_{min}	0.000	0.000	0.000
		$Mz_{máx}$	0.000	0.001	0.002

	Envolventes de l	os esfuei	zos en b	arras	
Barra	Tino do combinación	Ecfuerze	Posicio	ones en la	barra
Barra	Tipo de combinación	Estuerzo	0.000 m	0.300 m	0.600 m
N13/N12	Madera	N_{min}	-0.062	-0.062	-0.062
		$N_{máx}$	-0.007	-0.007	-0.007
		Vy_{min}	0.000	0.000	0.000
		$Vy_{m\acute{a}x}$	0.003	0.003	0.003
		Vz_{min}	0.008	0.008	0.009
		$Vz_{\text{máx}}$	0.073	0.073	0.074
		Mt_{min}	0.000	0.000	0.000
		$Mt_{máx}$	0.000	0.000	0.000
		My_{min}	0.005	0.002	-0.003
		$My_{máx}$	0.041	0.019	0.000
		Mz_{min}	0.000	0.000	0.000
		$Mz_{máx}$	0.002	0.001	0.000

	Envolventes de los esfuerzos en barras										
Barra	Tipo de combinación	Esfuerzo	Posiciones en la barra								
Dalla	Tipo de combinación	ESTUELZO	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N4/N11	Madera	N _{mín}	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
		N _{máx}	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
		Vy _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	-0.056	-0.046	-0.036	-0.016	-0.006	0.001	0.003	0.004	0.005

	Envolventes de los esfuerzos en barras												
Воммо	Tipo de combinación	Eafinare.				Posici	ones en la	barra					
Barra	ripo de combinación	Esfuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m		
		Vz _{máx}	-0.006	-0.005	-0.004	-0.002	-0.001	0.004	0.024	0.034	0.043		
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		My _{mín}	-0.016	-0.005	0.001	0.002	0.002	0.002	0.001	0.001	-0.003		
		My _{máx}	-0.002	0.000	0.003	0.014	0.017	0.017	0.011	0.005	0.000		
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

			Envoi	ventes ae	ios estue	rzos en b	arras				
Barra	Tipo de combinación	Esfuerzo				Posici	ones en la	barra			
Dalla	Tipo de combinación	ESTUELZO	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N11/N8	Madera	N _{mín}	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
		N _{máx}	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128
		Vy _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	-0.050	-0.040	-0.030	-0.010	0.000	0.001	0.004	0.005	0.006
		Vz _{máx}	-0.006	-0.005	-0.004	-0.001	0.000	0.010	0.030	0.040	0.050
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	-0.006	0.000	0.001	0.002	0.002	0.002	0.001	0.000	-0.006
		My _{máx}	-0.001	0.003	0.010	0.019	0.020	0.019	0.010	0.003	-0.001
		Mz _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	Envolventes de los esfuerzos en barras											
			Envol	ventes de	los esfue	erzos en l	oarras					
Barra	Tipo de combinación	Esfuerzo				Posici	ones en la	barra				
Dalla	Tipo de combinación	LSideizo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m	
N8/N9	Madera	N _{mín}	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	
		N _{máx}	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128	0.128	
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vy _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vz_{min}	-0.050	-0.040	-0.030	-0.010	0.000	0.001	0.004	0.005	0.006	
		$Vz_{máx}$	-0.006	-0.005	-0.004	-0.001	0.000	0.010	0.030	0.040	0.050	
		Mt _{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		My _{mín}	-0.006	0.000	0.001	0.002	0.002	0.002	0.001	0.000	-0.006	
		My _{máx}	-0.001	0.003	0.010	0.019	0.020	0.019	0.010	0.003	-0.001	
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

			Envol	ventes de	los esfue	erzos en l	parras				
Barra	Tipo de combinación	Esfuerzo				Posici	ones en la	barra			
Dalla	Tipo de combinación	Estuerzo	0.000 m	0.212 m	0.424 m	0.849 m	1.061 m	1.273 m	1.698 m	1.910 m	2.122 m
N9/N3	Madera	N _{mín}	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
		N _{máx}	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059	0.059
		Vy _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vy _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Vz_{min}	-0.043	-0.034	-0.024	-0.004	0.001	0.002	0.004	0.005	0.006
		$Vz_{máx}$	-0.005	-0.004	-0.003	-0.001	0.006	0.016	0.036	0.046	0.056
		Mt _{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		My _{mín}	-0.003	0.001	0.001	0.002	0.002	0.002	0.001	-0.005	-0.016
		My _{máx}	0.000	0.005	0.011	0.017	0.017	0.014	0.003	0.000	-0.002
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	Envolventes de los esfuerzos en barras											
_							ones en la	barra				
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m	
N13/N14	Madera	N _{mín}	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	
		N _{máx}	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vy _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vz_{min}	-0.073	-0.050	-0.030	-0.014	0.000	0.002	0.003	0.005	0.008	
		Vz _{máx}	-0.008	-0.005	-0.003	-0.002	0.000	0.014	0.031	0.050	0.073	
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		My _{mín}	-0.002	0.001	0.002	0.003	0.003	0.003	0.002	0.001	-0.002	
		My _{máx}	0.000	0.011	0.020	0.025	0.026	0.025	0.020	0.011	0.000	
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

	Envolventes de los esfuerzos en barras											
			Envoiv	entes ae	ios estuei	rzos en ba	arras					
Barra	Tipo de combinación	Esfuerzo		Posiciones en la barra								
Dalla	Tipo de combinación	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m	
N14/N15	Madera	N _{mín}	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	-0.040	
		N _{máx}	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	
		Vy _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vy _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vz_{min}	-0.073	-0.050	-0.030	-0.014	0.000	0.002	0.003	0.005	0.008	
		Vz _{máx}	-0.008	-0.005	-0.003	-0.002	0.000	0.014	0.031	0.050	0.073	
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		My _{mín}	-0.002	0.001	0.002	0.003	0.003	0.003	0.002	0.001	-0.002	
		My _{máx}	0.000	0.011	0.020	0.025	0.026	0.025	0.020	0.011	0.000	
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

	Envolventes de los esfuerzos en barras											
_							ones en la	barra				
Barra	Tipo de combinación	Esfuerzo	0.000 m	0.219 m	0.437 m	0.656 m	0.875 m	1.094 m	1.312 m	1.531 m	1.750 m	
N15/N6	Madera	N _{mín}	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	
		$N_{máx}$	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		$Vy_{m\acute{a}x}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Vz_{min}	-0.073	-0.050	-0.030	-0.014	0.000	0.002	0.003	0.005	0.008	
		$Vz_{máx}$	-0.008	-0.005	-0.003	-0.002	0.000	0.014	0.031	0.050	0.073	
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		My _{mín}	-0.002	0.001	0.002	0.003	0.003	0.003	0.002	0.001	-0.002	
		My _{máx}	0.000	0.012	0.020	0.025	0.027	0.025	0.020	0.012	0.000	
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

	Envolventes de los esfuerzos en barras												
Down	Tino do combinación	Esfuerzo				Posici	ones en la	barra					
Barra	Tipo de combinación	Estuerzo	0.000 m	0.219 m	0.438 m	0.656 m	0.875 m	1.094 m	1.313 m	1.531 m	1.750 m		
N5/N13	Madera	N _{mín}	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035	-0.035		
		$N_{máx}$	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004		
		Vy_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		$Vy_{máx}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Vz_{min}	-0.073	-0.050	-0.030	-0.014	0.000	0.002	0.003	0.005	0.008		
		$Vz_{máx}$	-0.008	-0.005	-0.003	-0.002	0.000	0.014	0.031	0.050	0.073		
		Mt _{mín}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Mt _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		My_{min}	-0.002	0.001	0.002	0.003	0.003	0.003	0.002	0.001	-0.002		
		My _{máx}	0.000	0.012	0.020	0.025	0.027	0.025	0.020	0.012	0.000		
		Mz_{min}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
		Mz _{máx}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

puente 7 a 6 m Fecha: 03/07/25

2.3.2.2. Resistencia

Referencias:

N: Esfuerzo axil (t)

Vy: Esfuerzo cortante según el eje local Y de la barra. (t) Vz: Esfuerzo cortante según el eje local Z de la barra. (t)

Mt: Momento torsor (t⋅m)

My: Momento flector en el plano 'XZ' (giro de la sección respecto al eje local 'Y' de la barra). (t·m) Mz: Momento flector en el plano 'XY' (giro de la sección respecto al eje local 'Z' de la barra). (t·m)

Los esfuerzos indicados son los correspondientes a la combinación pésima, es decir, aquella que demanda la máxima resistencia de la sección.

Origen de los esfuerzos pésimos:

- G: Sólo gravitatorias

GV: Gravitatorias + vientoGS: Gravitatorias + sismo

- GVS: Gravitatorias + viento + sismo

 η : Aprovechamiento de la resistencia. La barra cumple con las condiciones de resistencia de la norma si se cumple que $\eta \le 100$ %.

			Co	omprobac	ión de re	sistencia				
Barra	η (%)	Posición (m)	N (t)	Vy (t)	Esfuerzos Vz (t)	pésimos Mt (t·m)	My (t·m)	Mz (t·m)	Origen	Estado
N1/N11	74.92	1.750	0.027	-0.011	-0.299	0.000	0.592	0.024	G	Cumple
N11/N7	95.71	1.750	-0.027	0.033	-0.037	0.000	0.754	-0.034	G	Cumple
N7/N9	95.71	0.000	-0.027	-0.033	0.037	0.000	0.754	-0.034	G	Cumple
N9/N2	74.92	0.000	0.027	0.011	0.299	0.000	0.592	0.024	G	Cumple
N2/N6	36.27	0.600	-0.224	0.015	-0.043	0.001	0.015	-0.005	G	Cumple
N6/N3	36.27	0.000	-0.224	-0.020	0.030	-0.001	0.015	-0.005	G	Cumple
N4/N12	71.25	1.750	-0.001	-0.022	-0.255	0.000	0.554	0.032	G	Cumple
N12/N8	98.70	1.750	0.001	0.040	-0.087	0.000	0.775	-0.038	G	Cumple
N8/N10	98.70	0.000	0.001	-0.040	0.087	0.000	0.775	-0.038	G	Cumple
N10/N3	71.25	0.000	-0.001	0.022	0.255	0.000	0.554	0.032	G	Cumple
N1/N5	36.25	0.600	-0.224	-0.015	-0.043	-0.001	0.015	0.005	G	Cumple
N5/N4	36.25	0.000	-0.224	0.020	0.030	0.001	0.015	0.005	G	Cumple
N7/N14	56.35	0.600	-0.066	0.000	-0.073	0.000	0.041	0.000	G	Cumple
N14/N8	56.35	0.000	-0.066	0.000	0.073	0.000	0.041	0.000	G	Cumple
N9/N15	59.80	0.600	-0.062	0.003	-0.073	0.000	0.041	-0.002	G	Cumple
N15/N10	59.80	0.000	-0.062	-0.003	0.073	0.000	0.041	-0.002	G	Cumple
N11/N13	59.80	0.600	-0.062	-0.003	-0.073	0.000	0.041	0.002	G	Cumple
N13/N12	59.80	0.000	-0.062	0.003	0.073	0.000	0.041	0.002	G	Cumple
N4/N11	25.05	1.273	0.059	0.000	0.004	0.000	0.017	0.000	G	Cumple
N11/N8	31.50	1.061	0.128	0.000	0.000	0.000	0.020	0.000	G	Cumple
N8/N9	31.50	1.061	0.128	0.000	0.000	0.000	0.020	0.000	G	Cumple
N9/N3	25.05	0.849	0.059	0.000	-0.004	0.000	0.017	0.000	G	Cumple
N13/N14	37.00	0.875	-0.040	0.000	0.000	0.000	0.026	0.000	G	Cumple
N14/N15	37.00	0.875	-0.040	0.000	0.000	0.000	0.026	0.000	G	Cumple
N15/N6	37.14	0.875	-0.035	0.000	0.000	0.000	0.027	0.000	G	Cumple
N5/N13	37.14	0.875	-0.035	0.000	0.000	0.000	0.027	0.000	G	Cumple

puente 7 a 6 m Fecha: 03/07/25

2.3.2.3. Flechas

Referencias:

Pos.: Valor de la coordenada sobre el eje 'X' local del grupo de flecha en el punto donde se produce el valor pésimo de la flecha.

L.: Distancia entre dos puntos de corte consecutivos de la deformada con la recta que une los nudos extremos del grupo de flecha.

	Flechas										
Crupo		xima absoluta xy xima relativa xy		xima absoluta xz xima relativa xz		iva absoluta xy tiva relativa xy		iva absoluta xz tiva relativa xz			
Grupo	Pos.	Flecha	Pos.	Flecha	Pos.	Flecha	Pos.	Flecha			
	(m)	(mm)	(m)	(mm)	(m)	(mm)	(m)	(mm)			
N1/N2	5.688	0.28	3.500	29.67	5.688	0.21	3.500	20.91			
	3.500	L/(>1000)	3.500	L/235.9	3.500	L/(>1000)	3.500	L/334.8			
N2/N3	0.600	0.38	0.600	0.31	0.600	0.31	0.600	0.24			
	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)			
N4/N3	5.469	0.45	3.500	29.25	5.469	0.34	3.500	20.64			
	5.469	L/(>1000)	3.500	L/239.3	5.469	L/(>1000)	3.500	L/339.2			
N1/N4	0.600	0.38	0.600	0.31	0.600	0.31	0.600	0.24			
	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)			
N5/N6	5.250	0.35	3.500	30.14	5.250	0.27	3.500	21.31			
	3.500	L/(>1000)	3.500	L/232.2	3.500	L/(>1000)	3.500	L/328.5			
N7/N8	0.600	0.00 L/(>1000)	0.600 0.600	0.99 L/(>1000)	0.600	0.00 L/(>1000)	0.600 0.600	0.78 L/(>1000)			
N9/N10	0.600	0.24	0.600	0.99	0.600	0.19	0.600	0.79			
	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)			
N11/N12	0.600	0.24	0.600	0.99	0.600	0.19	0.600	0.79			
	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)	0.600	L/(>1000)			
N4/N11	0.849	0.10	1.061	1.35	0.849	0.08	1.061	1.04			
	0.849	L/(>1000)	1.061	L/(>1000)	0.849	L/(>1000)	1.061	L/(>1000)			
N11/N8	0.424	0.00 L/(>1000)	1.061 1.061	1.67 L/(>1000)	0.424	0.00 L/(>1000)	1.061 1.061	1.31 L/(>1000)			
N8/N9	1.910	0.00 L/(>1000)	1.061 1.061	1.67 L/(>1000)	1.910	0.00 L/(>1000)	1.061 1.061	1.31 L/(>1000)			
N9/N3	1.273	0.10	1.061	1.35	1.273	0.08	1.061	1.04			
	1.273	L/(>1000)	1.061	L/(>1000)	1.273	L/(>1000)	1.061	L/(>1000)			

2.3.2.4. Comprobaciones E.L.U. (Completo)

Nota: Se muestra el listado completo de comprobaciones realizadas para las 10 barras con mayor coeficiente de aprovechamiento.

puente 7 a 6 m Fecha: 03/07/25

Barra N12/N8

Perfil: GL-200x120 Material: Madera (C24)								
	Nuc	los		Características mecánicas				
z 	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)	
	N12	N8	1.750	240.00	8000.00	2880.00	7153.92	
	Notas: (1) Inero	cia respecto ento de ine	al eje indicado ercia a torsión ur			Dan dan lak	1	
			Pande	0		Pandeo lat	erai	
Y		Pla	no XY	Plano XZ	Ala	sup.	Ala inf.	
	β	1	.00	1.00	0.	00	0.00	
	L _K	1.	.750	1.750	0.0	000	0.000	
	C ₁		-			1.000		
		ficiente de pa			·			

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

Se debe satisfacer:

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} \le 1 \hspace{1cm} \text{h } < \underline{\quad \textbf{0.001} \quad} \checkmark$$

C1: Factor de modificación para el momento crítico

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.35 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

 $\mathbf{s}_{\mathsf{to.d.}}$: Tensión de cálculo a tracción paralela a la fibra, dada por: $\mathbf{s}_{\mathsf{to.d.}}$: 0.01 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

 $\mathbf{N}_{\mathsf{t,o,d}}$: Tracción axial de cálculo paralela a la fibra $\mathbf{N}_{\mathsf{t,o,d}}$: 0.001 t \mathbf{A} : Área de la sección transversal \mathbf{A} : 240.00 cm² $\mathbf{f}_{\mathsf{t,o,d}}$: Resistencia de cálculo a tracción paralela a la fibra, dada por: $\mathbf{f}_{\mathsf{t,o,d}}$: 60.38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{k}}$: Resistencia característica a tracción paralela a la fibra $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{k}}$: $\underline{142.71}_{\mathsf{g}_\mathsf{M}}$ kp/cm² $\underline{\mathsf{g}_\mathsf{M}}$: Coeficiente parcial para las propiedades del material $\underline{\mathsf{g}_\mathsf{M}}$: $\underline{1.30}_{\mathsf{m}}$

0.55

1.00

k_h :

puente 7 a 6 m Fecha: 03/07/25

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} \leq 1$$

h: **0.936**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

 $\mathbf{s}_{\text{m,d}}$: Tensión de cálculo a flexión, dada por:

$$\sigma_{m,d} = \left| M_d \right| / W_{ei}$$

Donde:

M_d: Momento flector de cálculo

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donda:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

Donde:

Clase de duración de la carga

Clase de servicio

 $\boldsymbol{f}_{\scriptscriptstyle{m,k}}$: Resistencia característica a flexión

 \boldsymbol{k}_h : Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

$$k_{h} = 1.0$$

gm: Coeficiente parcial para las propiedades del material

s_{m,y,d} : _____ kp/cm²

96.90

kp/cm²

 $S_{m,y,d}^{\dagger}$:

 $\mathbf{M}_{y,d}^{+}$: 0.775 t·m t·m $\mathbf{M}_{y,d}^{-}$: 0.000 t·m \mathbf{W}_{du} : 800.00 cm³

 \mathbf{k}_{mod}^{+} : 0.55

Clase† : <u>Larga duración</u>

Clase: Permanente
3

f_{m,k} : 244.65 kp/cm²

k_h: 1.00

g_M: 1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1 \qquad \qquad h : \underline{\qquad 0.072 \qquad }$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que el módulo resistente elástico de la sección respecto al eje z es inferior o igual al módulo resistente elástico respecto al eje y.

Resistencia de la sección transversal a flexión:

$\boldsymbol{s}_{\text{m,d}}$: Tensión de cálculo a flexión, dada por:	S _{m,z,d} ⁺ :	0.00	kp/cm²
	S _{m,z,d} :	7.84	kp/cm²
$\sigma_{m,d} = M_d /W_{el}$			
Donde:			
M _d : Momento flector de cálculo	$\mathbf{M}_{\mathbf{z},\mathbf{d}}^{+}$:	0.000	t∙m
	M	0.038	t·m

 $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: 0.038 t·m \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal $\mathbf{W}_{\mathsf{el},\mathsf{z}}$: $\frac{480.00}{2}$ cm³ $\mathbf{f}_{\mathsf{m},\mathsf{z},\mathsf{d}}$: Resistencia de cálculo a flexión, dada por: $\mathbf{f}_{\mathsf{m},\mathsf{z},\mathsf{d}}$: $\frac{98.39}{2}$ kp/cm² $\mathbf{f}_{\mathsf{m},\mathsf{z},\mathsf{d}}$: $\frac{108.23}{2}$ kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad \mathbf{k}_{mod}^+ : 0.50

Donde:

Clase de duración de la carga

Clase : Permanente

Clase : Larga duración

Clase de servicio

Clase : 13

 $\mathbf{f}_{\mathsf{m,k}}$: Resistencia característica a flexión $\mathbf{f}_{\mathsf{m,k}}$: 244.65 \mathbf{k}_{h} : Factor de altura, dado por: \mathbf{k}_{h} : 1.05

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

sección en tracción h: 120.00 mm g_M: Coeficiente parcial para las propiedades del material $g_M: 1.30$

kp/cm²

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.021}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.37 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{v,d}$: 0.040 t A: Área de la sección transversal A: 240.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: $\underline{17.25}$ kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: <u>40.77</u> kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.098}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: \mathbf{t}_{zd} : 1.69 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{z,d}$: 0.181 t A: Área de la sección transversal A : 240.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: Resistencia característica a cortante $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gм :

1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m, \gamma, d}}{f_{m, \gamma, d}} + k_m \cdot \frac{\sigma_{m, z, d}}{f_{m, z, d}} \leq 1$$

h: 0.987 V

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.728 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 96.90 kp/cm² $S_{m,z,d}$: 7.84 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathbf{y},\mathbf{d}}$: 0.775 t·m $\mathbf{M}_{z,d}$: 0.038 t·m

Wel: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 800.00 cm³ **W**_{el,z}: 480.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga

duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² **f**_{m,k}: Resistencia característica a flexión **k**_h: Factor de altura, dado por:

k_{h,y} : __1.00 **k**_{h,z} : 1.05 g_M: 1.30

gm: Coeficiente parcial para las propiedades del material \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo

flexión esviada y la falta de homogeneidad del material en la sección transversal $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

Se debe satisfacer:

Resistencia a flexión y tracción axial combinadas

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,v,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.987 V

puente 7 a 6 m Fecha: 03/07/25

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.728 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{tod}: Tensión de cálculo a tracción paralela a la fibra, dada por:

 $S_{t.0.d}$: 0.01 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t.0.d}: Tracción axial de cálculo paralela a la fibra

 $N_{t,0,d}$: 0.001 t

A: Área de la sección transversal

A: 240.00 cm²

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,v,d}$: 96.90 kp/cm² $S_{m,z,d}$: 7.84 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}$: 0.775 t·m **M**_{z,d}: -0.038 t⋅m

Wel: Módulo resistente elástico de la sección transversal

 $W_{el,v}: 800,00 \text{ cm}^3$

 $\mathbf{f}_{t,0,d}$: Resistencia de cálculo a tracción paralela a la fibra, dada por:

 $W_{el,z}$: 480.00 cm³ $\mathbf{f}_{t,0,d}$: 60,38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 **k**_h: 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares

de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gm: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm²

$$\mathbf{f}_{\mathsf{m,z,d}}$$
: 108.23 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,z}$: 1.05

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eie z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

puente 7 a 6 m Fecha: 03/07/25

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

g_M: Coeficiente parcial para las propiedades del material

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección

flexión esviada y la falta de homogeneidad del material en la sección transversal

h : 120.00 mm

gм : ___1.30

 $k_m : 0.70$

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N8/N10

Perfil: GL-200x120 Material: Madera (C24)								
	Nudos		1	Características mecánicas				
z 	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)	
	N8	N10	1.750	240.00	8000.00	2880.0	0 7153.92	
	Notas: (1) Inerc (2) Mom	cia respecto ento de ine	al eje indicado ercia a torsión u	niforme				
			Pande	0		Pandeo	lateral	
Y		Pla	no XY	Plano XZ	Ala	sup.	Ala inf.	
	β	1	.00	1.00	(0.00	0.00	
	L _K	1.	750	1.750	0	.000	0.000	
	C ₁		_			1.00	00	
	L _K : Lon	iciente de p gitud de pa tor de mod		momento críti	со			

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

Se debe satisfacer:

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} \le 1 \qquad \qquad h < \underline{\quad \textbf{0.001} \quad } \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $0.8 \cdot PP + 1.35 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

 $\mathbf{s}_{\mathsf{t.o.d}}$: Tensión de cálculo a tracción paralela a la fibra, dada por: $\mathbf{s}_{\mathsf{t.o.d}}$: 0.01 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

 $egin{array}{lll} egin{array}{lll} egin{arra$

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{k}}$: Resistencia característica a tracción paralela a la fibra $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{k}}$: $\underline{142.71}_{\mathsf{g}_\mathsf{M}}$ kp/cm² $\underline{\mathsf{g}_\mathsf{M}}$: Coeficiente parcial para las propiedades del material $\underline{\mathsf{g}_\mathsf{M}}$: $\underline{1.30}_{\mathsf{m}}$

0.55

1.00

 \mathbf{k}_{h} :

puente 7 a 6 m Fecha: 03/07/25

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} \leq 1$$

h: **0.936**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

 $\mathbf{s}_{\text{m,d}}$: Tensión de cálculo a flexión, dada por:

$$\sigma_{m,d} = \left| M_d \right| / W_{el}$$

Donde:

M_d: Momento flector de cálculo

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

$$f_{m,d} = k_{mod} \cdot k_n \cdot f_{m,k} / \gamma_M$$

Donda

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

Donde:

Clase de duración de la carga

Clase de servicio

f_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

$$k_{h} = 1.0$$

gm: Coeficiente parcial para las propiedades del material

s_{m,y,d} : _____ kp/cm²

0.775

96.90

kp/cm²

t∙m

 $S_{m,y,d}^{\dagger}$:

 $M_{v,d}^+$:

 ${f M_{y,d}}$: 0.000 t·m ${f W_{el,y}}$: 800.00 cm³

 $\mathbf{f}_{m,y,d}^{-}$: 103.51 kp/cm² kp/cm² kp/cm²

 \mathbf{k}_{mod}^{+} : 0.55

Clase† : <u>Larga duración</u>

Clase: Permanente
3

f_{m,k} : 244.65 kp/cm²

k_h : 1.00

g_M: 1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1 \hspace{1.5cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \textbf{0.072} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que el módulo resistente elástico de la sección respecto al eje z es inferior o igual al módulo resistente elástico respecto al eje y.

Resistencia de la sección transversal a flexión:

$\mathbf{s}_{m,d}$: Tension de calculo a flexion, dada por:	S _{m,z,d} ':	0.00	kp/cm ²
	S _{m,z,d} :	7.84	kp/cm²
$\sigma_{m,d} = M_d /W_{el}$			
Donde:			
M _d : Momento flector de cálculo	$\mathbf{M}_{z,d}^{+}$:	0.000	t∙m

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal $\mathbf{W}_{\text{el,z}}$: 0.038 t·m $\mathbf{W}_{\text{el,z}}$: 480.00 cm³ $\mathbf{f}_{\text{m,z,d}}$: Resistencia de cálculo a flexión, dada por: $\mathbf{f}_{\text{m,z,d}}$: 98.39 kp/cm² $\mathbf{f}_{\text{m,z,d}}$: 108.23 kp/cm²

$$\boldsymbol{f}_{m,d} = \boldsymbol{k}_{mod} \cdot \boldsymbol{k}_h \cdot \boldsymbol{f}_{m,k} \big/ \boldsymbol{\gamma}_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad \mathbf{k}_{mod}^+ : \mathbf{k}_{mod}^- :

Donde:

Clase de duración de la carga

Clase : Permanente

Clase : Larga duración

Clase de servicio

Clase : Larga duración

Clase : 3

 $\mathbf{f}_{\mathsf{m,k}}$: Resistencia característica a flexión $\mathbf{f}_{\mathsf{m,k}}$: 244.65 \mathbf{k}_{h} : Factor de altura, dado por: \mathbf{k}_{h} : 1.05

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

sección en tracción h: 120.00 mm g_M: Coeficiente parcial para las propiedades del material $g_M: 1.30$

kp/cm²

0.50

0.55

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.021}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.37 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{v,d} : \underline{0.040} \text{ t}$ A: Área de la sección transversal $A : \underline{240.00} \text{ cm}^2$

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: $\underline{17.25}$ kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} \big/ \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: Resistencia característica a cortante $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: $\underline{40.77}$ kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.098}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{t}_{ t a}$: Tensión de cálculo a cortante, dada por: $\mathbf{t}_{ t z, a}$: 1.69 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{z,d}$: 0.181 t A: Área de la sección transversal A : 240.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

g_M: Coeficiente parcial para las propiedades del material

gм :

1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.987 V

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.728 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 96.90 kp/cm²

Donde:

 $\sigma_{m,d} = |M_d|/W_{el}$

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathbf{y},\mathbf{d}}$: 0.775 t·m $\mathbf{M}_{z,d}$: 0.038 t·m

Wel: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 800.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 480.00 cm³ $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm²

$$\mathbf{f}_{m,z,d}$$
: 108.23 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$ Donde:

> **k**_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

k_{h,y} : __1.00 **k**_{h,z} : 1.05

gm: Coeficiente parcial para las propiedades del material

g_M: 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

Se debe satisfacer:

Resistencia a flexión y tracción axial combinadas

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.987 V

puente 7 a 6 m Fecha: 03/07/25

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.728 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N8, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{tod}: Tensión de cálculo a tracción paralela a la fibra, dada por:

 $\mathbf{s}_{t,0,d}$: 0.01 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t.0.d}: Tracción axial de cálculo paralela a la fibra

 $N_{t,0,d}$: 0.001 t

 $S_{m,z,d}$: 7.84

 \mathbf{k}_{mod} : 0.55

A: Área de la sección transversal A: 240.00 cm²

 $\mathbf{s}_{m,v,d}$: 96.90 kp/cm²

kp/cm²

$$\mathbf{s}_{\scriptscriptstyle{\mathsf{m,d}}}$$
: Tensión de cálculo a flexión, dada por:

$$\sigma_{m,d} = \left| M_d \right| / W_{el}$$

Donde:

M_d: Momento flector de cálculo $\mathbf{M}_{y,d}$: 0.775 t·m

M_{z,d}: -0.038 t⋅m Wel: Módulo resistente elástico de la sección transversal $W_{el,v}: 800,00 \text{ cm}^3$

 $W_{el,z}$: 480.00 cm³ $\mathbf{f}_{t,0,d}$: Resistencia de cálculo a tracción paralela a la fibra, dada por: $\mathbf{f}_{t,0,d}$: 60,38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 **k**_h: 1.00 **k**_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

gm: Coeficiente parcial para las propiedades del material gm: 1.30

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

f_{m,k}: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por: $k_{h,z}$: 1.05

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eie z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

puente 7 a 6 m Fecha: 03/07/25

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en

tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

gм : 1.30

h: 120.00 mm

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N//N9								
Perfil: GL-200x120 Material: Madera (C24)								
	Nuc	los			Características mecánicas			
z 	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)	
	N7	N9	1.750	240.00	8000.00	2880.00	7153.92	
	Notas: (1) Inero (2) Mom	Notas: ⁽¹⁾ Inercia respecto al eje indicado ⁽²⁾ Momento de inercia a torsión uniforme						
			Pandeo			Pandeo late	ateral	
Y		Pla	no XY	Plano XZ	Ala	sup.	Ala inf.	
	β	1	.00	1.00	0.	00	0.00	
	L _K	1.	750	1.750	0.0	000	0.000	
	C ₁		_			1.000		
		ficiente de pa						

C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h: 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h: 0.001 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.002

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35 PP+1.35 CM1+1.5 Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

 $S_{c,0,d}$: 0.11 kp/cm²

$$\sigma_{c0,d} = \left|N_{c,0,d}\right| \! / \! A$$

Donde:

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

0.027

A: Área de la sección transversal

A : cm² 240.00

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

 $\mathbf{f}_{c,0,d}$: 90.57 kp/cm²

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

puente 7 a 6 m Fecha: 03/07/25

 ${f k}_{mod}$: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{0},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - \lambda_{rel}^{-2}}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

 $\mathfrak{b}_{\mathfrak{c}}$: Factor asociado a la rectitud de las piezas

_{rel}: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,k}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $\mathbf{f}_{c,o,k}$: Resistencia característica a compresión paralela a la fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 $\mathbf{L}_{\mathbf{k}}$: Longitud de pandeo de la barra

i: Radio de giro

 \mathbf{k}_{mod} : 0.55 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm²

gm: 1.30

 $\mathbf{c}_{c,y} : 0.95$ $\mathbf{c}_{c,z} : 0.79$

.,z : <u>0.79</u>

k_z: 0.92

0.65

 k_v :

b_c: 0.20 rel,y: 0.51 rel,z: 0.86

E_{0,k}: 75433.23 kp/cm²

f_{c,0,k}: <u>214.07</u> kp/cm²

y: 30.31 z: 50.52

L_{k,y} : __1750.00_ mm

 $\mathbf{L}_{\mathsf{k,z}}$: <u>1750.00</u> mm $\mathbf{i_y}$: <u>57.74</u> mm

i_z: 34.64 mm

puente 7 a 6 m Fecha: 03/07/25

h: 0.910

0.50

kp/cm² kp/cm²

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \le 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

$\mathbf{s}_{\scriptscriptstyle{m,d}}$: Tensión de cálculo a flexión, dada por:	S _{m,y,d} ⁺ :	94.21
	S _{m,y,d} :	0.00

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

$$\mathbf{M}_{d}$$
: Momento flector de cálculo
$$\mathbf{M}_{v,d}^{+} : \underline{0.754} \quad \text{t·m}$$

$$\mathbf{M}_{v,d}^{-} : \underline{0.000} \quad \text{t·m}$$

Wel: Módulo resistente elástico de la sección transversal $\mathbf{W}_{\mathsf{el,y}}$: 800.00 cm³ $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por: $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: kp/cm² 103.51 kp/cm² $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}$: 94.10

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y 0.55 el contenido de humedad $\mathbf{k}_{\mathsf{mod}}$:

Donde:

Clase de duración de la carga **Clase**⁺ : Larga duración

Clase: Permanente Clase de servicio Clase: 3

f_{m,k}: Resistencia característica a flexión **f**_{m,k} : 244.65 kp/cm² k_h: Factor de altura, dado por: \mathbf{k}_{h} : 1.00

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales

a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material gм : 1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

h : **0.065**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que el módulo resistente elástico de la sección respecto al eje z es inferior o igual al módulo resistente elástico respecto al eje y.

Resistencia de la sección transversal a flexión:

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{S}_{m,z,d}^{\dagger}$: 0.00 kp/cm² kp/cm² kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{z,d}^{+}$: 0.000 t·m $\mathbf{M}_{z,d}^{-}$: 0.034

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal

 $\mathbf{W}_{\text{el,z}}$: $\frac{480.00}{\text{fm,z,d}}$ cm³ kp/cm²

 $\mathbf{f}_{\text{m,d}}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,z,d}^{+}$: 98.39 kp/cm² kp/cm² $\mathbf{f}_{m,z,d}^{-}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 $\mathbf{k}_{\mathsf{mod}}$: Factor de modificación para la duración de la carga y el contenido de humedad

 \mathbf{k}_{mod}^{+} : 0.50

Donde:

Clase de duración de la carga

Clase : Permanente
Clase : Larga duración

Clase de servicio

Clase: <u>Larga duracio</u>

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² \mathbf{k}_{h} : 1.05

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

$$k_h = min\{(150/h)^{0.2}; 1.3\}$$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

h: _____120.00 mm g_M: 1.30

g_M: Coeficiente parcial para las propiedades del material

Página 76

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \begin{array}{c} \textbf{0.018} \end{array} \hspace{0.2cm} \checkmark \hspace{0.2cm}$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por:

ensión de cálculo a cortante, dada por:
$$\mathbf{t}_{y,d} : \underline{0.31} \text{ kp/cm}^2$$

$$\tau_d = \frac{3}{2} \cdot \frac{|V_d|}{A \cdot k}$$

Donde:

$$V_d$$
: Cortante de cálculo $V_{v,d}$: 0.033 tA: Área de la sección transversalA: 240.00 cm² k_{cr} : Factor que tiene en cuenta la influencia de las fendas k_{cr} : 0.67 tencia de cálculo a cortante, dada por: $t_{v,d}$: $t_{v,d}$:

$$\mathbf{f}_{v,d}$$
: Resistencia de cálculo a cortante, dada por:

$$f_{v,d} = k_{mod} \cdot f_{v,k} \big/ \gamma_M$$

Donde:

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{u,d}} \le 1$$
 h : **0.071**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 1.23 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55 f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm² gm: Coeficiente parcial para las propiedades del material gм : 1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.956 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.702 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 94.21 kp/cm² $S_{m,z,d}$: 7.04 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}$: 0.754 t·m $\mathbf{M}_{z,d}$: 0.034 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 800.00 cm³ **W**_{el,z}: 480.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga

duración) y el contenido de humedad (Clase de servicio 3) **f**_{m,k}: Resistencia característica a flexión

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,y}$: 1.00 **k**_{h,z} : 1.05

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

h: 0.956 V

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.957 V

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.704 \

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

 $\mathbf{s}_{c.o.d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

 $S_{c,0,d}$: 0.11 kp/cm²

$$\sigma_{c0,d} = |N_{c,0,d}|/A$$

Donde:

N_{c.0.d}: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d}$: 0.027 t A: 240.00 cm²

A: Área de la sección transversal

 $\mathbf{s}_{m,y,d}$: 94.21 kp/cm²

$$\mathbf{s}_{\scriptscriptstyle\mathsf{m,d}}$$
: Tensión de cálculo a flexión, dada por:

$$\sigma_{m,d} = \left| M_d \right| / W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathsf{y,d}}$: 0.754 t·m

Wel: Módulo resistente elástico de la sección transversal

 $\mathbf{M}_{z,d}$: 0.034 t·m $W_{el,y}$: 800.00 cm³

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

W_{el,z}: 480.00 cm³ $\mathbf{f}_{c,0,d}$: 90.57 kp/cm²

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm²

 $\mathbf{f}_{c,0,k}$: Resistencia característica a compresión paralela a la fibra gm: Coeficiente parcial para las propiedades del material

gм: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 7 a 6 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

duración) y el contenido de númedad (Clase de servicio 3) $\mathbf{f}_{m,k}$: Resistencia característica a flexión

k_h: Factor de altura, dado por:

 $egin{array}{lll} {\bf f}_{\rm m,k} & : & \underline{244.65} & {\rm kp/cm^2} \\ {f k}_{\rm h,y} & : & \underline{1.00} & \\ {f k}_{\rm h,z} & : & \underline{1.05} & \end{array}$

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

c_c: Factor de inestabilidad

h : <u>120.00</u> mm

 $\mathbf{k}_{m} : 0.70$ $\mathbf{c}_{c,y} : 0.95$

c_{c,z} : 0.79

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N11/N7

Barra N11/N7									
Perfil: GL-200x120 Material: Madera (C24)									
z	Nudos		1	Características mecánicas					
	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)		
	N11	N7	1.750	240.00	8000.00	2880.00	7153.92		
	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme								
		Panded		0		Pandeo lateral			
Y	Pla		no XY	Plano XZ	Ala	sup.	Ala inf.		
	β	1	.00	1.00	0.	00	0.00		
	L _K	1.750		1.750 0.0		000	0.000		
	C ₁		-			1.000			
	Notación: b: Coeficiente de pandeo L_{κ} : Longitud de pandeo (m) C_1 : Factor de modificación para el momento crítico								

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h: 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h: 0.001 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.002

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35 PP+1.35 CM1+1.5 Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

 $S_{c,0,d}$: 0.11 kp/cm²

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

Donde:

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d}$: 0.027

A: Área de la sección transversal

cm² 240.00

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

 $\mathbf{f}_{c,0,d}$: 90.57 kp/cm²

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

puente 7 a 6 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{0},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rel}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

 $\mathfrak{b}_{\mathfrak{c}}$: Factor asociado a la rectitud de las piezas

_{rel}: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,k}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $f_{\text{c,o,k}} .$ Resistencia característica a compresión paralela a la fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 $\mathbf{L}_{\mathbf{k}}$: Longitud de pandeo de la barra

i: Radio de giro

k_{mod}: 0.55

 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm² g_M: 1.30

c_{c,y}: 0.95 **c**_{c,z}: 0.79

 $\mathbf{k_{y}} : 0.65$ $\mathbf{k_{z}} : 0.92$

b_c: 0.20 rel,y: 0.51 rel,z: 0.86

E_{0,k}: 75433.23 kp/cm²

f_{c,0,k} : <u>214.07</u> kp/cm²

y: 30.31 z: 50.52

L_{k,y}: *1750.00* mm

 $\mathbf{L}_{\mathsf{k,z}}$: <u>1750.00</u> mm $\mathbf{i_y}$: <u>57.74</u> mm

i_z: 34.64 mm

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \le 1$$

0.910

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m,d}: Tensión de cálculo a flexión, dada por:

kp/cm² 94.21 **S**_{m,y,d} : kp/cm² 0.00

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $M_{y,d}^+$: 0.754 t∙m $M_{v,d}$: 0.000 t∙m cm³

Wel: Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{W}_{\mathsf{el,y}}$: 800.00 $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: kp/cm² 103.51 kp/cm² $\mathbf{f}_{m,y,d}$: 94.10

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

0.55 $\mathbf{k}_{\mathsf{mod}}$: 0.50

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración **Clase**: Permanente

Clase de servicio

Clase: 3

f_{m,k}: Resistencia característica a flexión

f_{m,k} : 244.65 kp/cm² \mathbf{k}_{h} : 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales

a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \textbf{\textit{0.065}}$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que el módulo resistente elástico de la sección respecto al eje z es inferior o igual al módulo resistente elástico respecto al eje y.

Resistencia de la sección transversal a flexión:

$\mathbf{s}_{\scriptscriptstylem,d}$: Tensión de cálculo a flexión, dada por:	S _{m,z,d} ⁺ :	0.00	kp/cm²
	$S_{m,z,d}$:	7.04	kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M _d : Momento flector de cálculo	M _{z,d} ⁺ :	0.000	t·m
	M _{z,d} :	0.034	t·m
\mathbf{W}_{el} : Módulo resistente elástico de la sección transversal	W _{el,z} :	480.00	cm ³
$\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:	f _{m,z,d} + :	98.39	kp/cm²

 $\mathbf{f}_{\mathsf{m},\mathsf{z},\mathsf{d}}$:

108.23

 $\mathbf{f}_{m,k}$: 244.65

 k_h : 1.05

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad $\mathbf{k}_{mod}^{\dagger}$: 0.50

Donde:

Clase de duración de la carga

Clase : Permanente

Clase : Larga duración

Clase de servicio

Clase : 13

k_n: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

$$k_h = min\{(150/h)^{0.2}; 1.3\}$$

f_{m,k}: Resistencia característica a flexión

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

sección en tracción h: 120.00 mn $g_M: Coeficiente parcial para las propiedades del material <math>g_M: 1.30$

kp/cm²

kp/cm²

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.018}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por:

ensión de cálculo a cortante, dada por:
$$\mathbf{t}_{y,d} : \underline{0.31} \text{ kp/cm}^2$$

$$\tau_d = \frac{3}{2} \cdot \frac{|V_d|}{A \cdot k}$$

Donde:

$$V_{d}$$
: Cortante de cálculo $V_{y,d}$: 0.033 t A: Área de la sección transversal $A: \frac{240.00}{k_{cr}}$: Factor que tiene en cuenta la influencia de las fendas $k_{cr}: \frac{0.67}{t_{v,d}}$: t

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_{M}$$

Donde:

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.071}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

$$\mathbf{t}_{d}$$
: Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 1.23 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

$$\mathbf{k}_{mod}$$
: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 40.77 40.77 40.77 \mathbf{g}_{M} : Coeficiente parcial para las propiedades del material \mathbf{g}_{M} : 1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} + k_{\text{m}} \cdot \frac{\sigma_{\text{m,z,d}}}{f_{\text{m,z,d}}} \leq 1$$

h: 0.956 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.702 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 94.21 kp/cm² kp/cm²

 $\sigma_{m,d} = |M_d|/W_{el}$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}$: 0.754 t·m $\mathbf{M}_{z,d}$: 0.034 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 800.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 480.00 cm³ $\mathbf{f}_{m,y,d}$: 103.51 kp/cm²

 $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga

duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² **f**_{m,k}: Resistencia característica a flexión **k**_h: Factor de altura, dado por: $k_{h,y}$: 1.00

k_{h,z} : 1.05

gm: Coeficiente parcial para las propiedades del material gм : 1.30 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo

flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N7, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.956 V

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.957 V

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.704 \

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

 $\mathbf{s}_{c.o.d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

 $S_{c,0,d}$: 0.11 kp/cm²

$$\sigma_{c0,d} = \left|N_{c,0,d}\right| / A$$

Donde:

N_{c.0.d}: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d}$: 0.027 t A: 240.00 cm²

A: Área de la sección transversal **s**_{m,d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 94.21 kp/cm² $S_{m,z,d}$: 7.04 kp/cm²

 $\sigma_{m,d} = |M_d|/W_{el}$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathsf{y,d}}$: 0.754 t·m

Wel: Módulo resistente elástico de la sección transversal

 $\mathbf{M}_{z,d}$: 0.034 t·m $W_{el,y}$: 800.00 cm³

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

W_{el,z}: 480.00 cm³ $\mathbf{f}_{c,0,d}$: 90.57 kp/cm²

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm²

 $\mathbf{f}_{c,0,k}$: Resistencia característica a compresión paralela a la fibra gm: Coeficiente parcial para las propiedades del material

gм: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 7 a 6 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión

k_h: Factor de altura, dado por:

 $egin{array}{lll} {\bf f}_{\rm m,k} & : & \underline{244.65} & {\rm kp/cm^2} \\ {f k}_{\rm h,y} & : & \underline{1.00} & \\ {f k}_{\rm h,z} & : & \underline{1.05} & \end{array}$

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

c: Factor de inestabilidad

h : <u>120.00</u> mm

0.79

gм : *1.30*

 $\mathbf{k}_{m} : 0.70$ $\mathbf{c}_{c,y} : 0.95$

C_{c,z}:

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N9/N2

Perfil: GL-200x120 Material: Madera (C24)							
	Nuc	Nudos			Característic	cas mecánic	as
z 	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
	N9	N2	1.750	240.00	8000.00	2880.00	7153.92
	Notas: (1) Inero (2) Mom	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme					
			Pande	0	Pandeo lateral		
Y		Pla	no XY	Plano XZ	Ala	sup.	Ala inf.
	β	1	.00	1.00	0.	00	0.00
	L _K	1.	.750	1.750	0.0	000	0.000
	C ₁	C ₁ - 1.000					
		ficiente de pa					

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

Se debe satisfacer:

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} \le 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \textbf{0.002} \hspace{0.2cm} \checkmark$$

 C_1 : Factor de modificación para el momento crítico

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones $1.35 \cdot PP + 1.35 \cdot CM1 + 1.5 \cdot Q1$.

Donde:

s_{toa}: Tensión de cálculo a tracción paralela a la fibra, dada por:

$$\sigma_{\rm t,0,d} = N_{\rm t,0,d}/A$$

Donde:

 $\mathbf{N}_{\mathsf{t},\mathsf{0},\mathsf{d}}$: Tracción axial de cálculo paralela a la fibra $\mathbf{N}_{\mathsf{t},\mathsf{0},\mathsf{d}}$: $\underbrace{0.027}_{240.00}$ t \mathbf{A} : Área de la sección transversal \mathbf{A} : $\underbrace{240.00}_{\mathbf{t},\mathsf{0},\mathsf{d}}$: Resistencia de cálculo a tracción paralela a la fibra, dada por: $\mathbf{f}_{\mathsf{t},\mathsf{0},\mathsf{d}}$: $\underbrace{60.38}_{60.38}$ kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

$$k_{h} = 1.0$$

 $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{k}}$: Resistencia característica a tracción paralela a la fibra $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{k}}$: $\underline{142.71}$ kp/cm² $\underline{\mathsf{g}_\mathsf{M}}$: Coeficiente parcial para las propiedades del material $\underline{\mathsf{g}_\mathsf{M}}$: $\underline{1.30}$

 $S_{t,0,d}$: 0.11 kp/cm²

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

k_h: 1.00

puente 7 a 6 m Fecha: 03/07/25

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,y,d}}{f_{m,y,d}} \leq 1$$

h: **0.715**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

 $\mathbf{s}_{\scriptscriptstyle{\mathsf{m,d}}}$: Tensión de cálculo a flexión, dada por:

$$\mathbf{s}_{m,y,d}^{+}$$
: 74.03 kp/cm² $\mathbf{s}_{m,y,d}^{-}$: 0.00 kp/cm²

$$\sigma_{m,d} = |M_d|/W_e$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}^{+}$: 0.592 t·m t·m $\mathbf{M}_{y,d}^{-}$: 0.000 t·m $\mathbf{W}_{\text{el,y}}$: 800.00 cm³

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}^{+}$: 103.51 kp/cm² kp/cm² kp/cm²

3

244.65

1.00

$$f_{\text{m,d}} = k_{\text{mod}} \cdot k_{\text{h}} \cdot f_{\text{m,k}} / \gamma_{\text{M}}$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

 ${f k}_{mod}^{}^{+}: 0.55$ ${f k}_{mod}^{}: 0.50$

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración Clase⁻ : Permanente

Clase:

 $f_{m,k}$:

 \mathbf{k}_{h} :

Clase de servicio

f_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales

a 150 mm:

$$k_h = 1.0$$

gm: Coeficiente parcial para las propiedades del material

g_M: 1.30

kp/cm²

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h : **0.046**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que el módulo resistente elástico de la sección respecto al eje z es inferior o igual al módulo resistente elástico respecto al eje y.

Resistencia de la sección transversal a flexión:

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{S}_{m,z,d}^{\dagger}$: 4.97 kp/cm² $\mathbf{S}_{m,z,d}$: 0.00 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{z,d}^{+}$: 0.024 t·m $\mathbf{M}_{z,d}^{-}$: 0.000 t·m

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal

 $\mathbf{W}_{\text{el,z}}$: $\frac{480.00}{\mathbf{f}_{\text{m,z,d}}^{+}}$ cm³ kp/cm²

 $\mathbf{f}_{\text{m,d}}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,z,d}$: 108.23 kp/cm² kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 $\mathbf{k}_{\mathsf{mod}}$: Factor de modificación para la duración de la carga y el contenido de humedad

 \mathbf{k}_{mod}^{+} : 0.55

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración

Clase de servicio

Clase: Permanente
3

f_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

$$k_h = min\{(150/h)^{0.2}; 1.3\}$$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

h: _____120.00 mm g_M: 1.30

g_M: Coeficiente parcial para las propiedades del material

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} \hspace{0.2cm} \hspace{$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

t_d: Tensión de cálculo a cortante, dada por:

$$\mathbf{t}_{\scriptscriptstyle\mathsf{y,d}}$$
 : __0.11__ kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{y,d}$: 0.011 tA: Área de la sección transversalA: 240.00 cm² k_{cr} : Factor que tiene en cuenta la influencia de las fendas k_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por:

$$\mathbf{f}_{\mathbf{v},\mathbf{d}}$$
: 17.25 kp/cm²

 $\boldsymbol{f}_{v,d} = \boldsymbol{k}_{mod} \cdot \boldsymbol{f}_{v,k} \big/ \boldsymbol{\gamma}_{M}$

Donde:

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.213}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N2, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: \mathbf{t}_{zd} : 3.67 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 0.55 $\mathbf{f}_{v,k}$: 0.55 $\mathbf{f}_{v,k}$: 0.55 $\mathbf{f}_{v,k}$: 0.55 $\mathbf{f}_{v,k}$: 0.55

puente 7 a 6 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: _74.03 kp/cm²

Donde:

 $\sigma_{m,d} = |M_d|/W_{el}$

M_d: Momento flector de cálculo

 $\mathbf{M}_{v,d}$: 0.592 t·m $\mathbf{M}_{z,d}$: 0.024 t·m

Wel: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 800.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 480.00 cm³ $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm²

$$\mathbf{f}_{\mathsf{m,z,d}}$$
: 108.23 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

k_{h,y} : __1.00 **k**_{h,z} : 1.05

gm: Coeficiente parcial para las propiedades del material

g_M: 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

Se debe satisfacer:

Resistencia a flexión y tracción axial combinadas

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.749 V

puente 7 a 6 m Fecha: 03/07/25

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.548

V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N9, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

s_{tod}: Tensión de cálculo a tracción paralela a la fibra, dada por:

s_{t,0,d}: 0.11 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{tod}: Tracción axial de cálculo paralela a la fibra

 $N_{t,0,d}$: 0.027 t

 $\mathbf{A} : \frac{0.027}{240.00} \text{ cm}^2$

 ${\bf A}$: Área de la sección transversal ${\bf s}_{\rm m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 74.03 kp/cm²

$$\mathbf{s}_{m,z,d}$$
: 4.97 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}$: <u>0.592</u> t·m $\mathbf{M}_{z,d}$: <u>0.024</u> t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $\mathbf{W}_{\text{el,y}}$: 800.00 cm³

 $\mathbf{f}_{t,o,d}$: Resistencia de cálculo a tracción paralela a la fibra, dada por:

 $\mathbf{W}_{\text{el,z}}$: 480.00 cm^3 $\mathbf{f}_{\text{t,0,d}}$: 60.38 kp/cm^2

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

Donde

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : 0.55 \mathbf{k}_{h} : 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_h = 1.0$

 $\mathbf{f}_{\mathsf{t},\mathsf{0},\mathsf{k}}$: Resistencia característica a tracción paralela a la fibra

f_{t,0,k} : <u>142.71</u> kp/cm²

gm: Coeficiente parcial para las propiedades del material

 $\mathbf{f}_{m,y,d}$: 1.30 kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

f_{md}: Resistencia de cálculo a flexión, dada por:

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

k_{mod} : 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $\mathbf{k}_{h,y} : \underline{1.00} \\
 \mathbf{k}_{h,z} : \underline{1.05}$

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eie z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

puente 7 a 6 m Fecha: 03/07/25

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en

tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

gм : 1.30

h: 120.00 mm

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N1/N11

Perfil: GL-200x120 Material: Madera (C24) Nudos Características mecánicas Longitud Ζ $I_{v}^{(1)}$ $I_{7}^{(1)}$ $I_t^{(2)}$ Área (m) Inicial Final (cm²)(cm4) (cm4) (cm4) 1.750 240.00 8000.00 2880.00 7153.92 N1 N11 Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme Pandeo lateral Pandeo Plano XY Ala inf. Plano XZ Ala sup. 1.00 1.00 0.00 0.00 β L_{κ} 1.750 1.750 0.000 0.000 C_1 1.000 Notación: b: Coeficiente de pandeo L_κ: Longitud de pandeo (m)

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

Se debe satisfacer:

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} \le 1 \qquad \qquad h \; : \; \underline{\textbf{0.002}} \; \checkmark$$

C1: Factor de modificación para el momento crítico

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{\text{t.o.d}}$: Tensión de cálculo a tracción paralela a la fibra, dada por: $\mathbf{s}_{\text{t.o.d}}$: 0.11 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

 $\mathbf{N}_{\mathsf{t},\mathsf{o},\mathsf{d}}$: Tracción axial de cálculo paralela a la fibra $\mathbf{N}_{\mathsf{t},\mathsf{o},\mathsf{d}}$: 0.027 t \mathbf{A} : Área de la sección transversal \mathbf{A} : 240.00 cm² $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{d}}$: Resistencia de cálculo a tracción paralela a la fibra, dada por: $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{d}}$: 60.38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

Donde

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

$$k_{h} = 1.0$$

 $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{k}}$: Resistencia característica a tracción paralela a la fibra $\mathbf{f}_{\mathsf{t},\mathsf{o},\mathsf{k}}: \underline{142.71} \text{ kp/cm}^2$ \mathbf{g}_M : Coeficiente parcial para las propiedades del material $\mathbf{g}_\mathsf{M}: \underline{1.30}$

0.55

 \mathbf{k}_{h} : 1.00

puente 7 a 6 m Fecha: 03/07/25

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

La comprobación no procede, ya que no hay axil de compresión.

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} \leq 1$$

h: **0.715**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m.d}: Tensión de cálculo a flexión, dada por:

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

Wel: Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

Donde:

Clase de duración de la carga

Clase de servicio

f_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

$$k_{h} = 1.0$$

gm: Coeficiente parcial para las propiedades del material

S_{m,y,d} : 74.03 kp/cm² **S**_{m,y,d} : 0.00 kp/cm²

 $M_{v,d}^+$: 0.592 t∙m $\mathbf{M}_{\mathsf{y},\mathsf{d}}$: t∙m 0.000

 $\mathbf{W}_{\mathsf{el,v}}$: cm³ 800.00

kp/cm² $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: 103.51 kp/cm² **f**_{m,y,d} : 94.10

 $\mathbf{k_{mod}}^{+}$: 0.55 $\mathbf{k}_{\mathsf{mod}}^{\mathsf{T}}$: 0.50

Clase⁺ : Larga duración

Clase : Permanente Clase: 3

kp/cm² $f_{m,k}$: 244.65

 \mathbf{k}_{h} : 1.00

g_M: 1.30

Página 97

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,z,d}}{f_{m-1}} \le 1$$

h : **0.046**

1

kp/cm²

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que el módulo resistente elástico de la sección respecto al eje z es inferior o igual al módulo resistente elástico respecto al eje y.

Resistencia de la sección transversal a flexión:

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $\mathbf{s_{m,z,d}}^{+}$: 4.97 kp/cm² kp/cm² kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{z,d}^{+}$: 0.024 t·m $\mathbf{M}_{z,d}^{-}$: 0.000 t·m

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal

 $\mathbf{W}_{\text{el,z}}$: $\frac{480.00}{\mathbf{f}_{\text{m,z,d}}^{+}}$ cm³ kp/cm²

98.39

$$\mathbf{f}_{\scriptscriptstyle{\mathsf{m}},\mathsf{d}}$$
: Resistencia de cálculo a flexión, dada por:

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 $\mathbf{k}_{\mathsf{mod}}$: Factor de modificación para la duración de la carga y el contenido de humedad

 \mathbf{k}_{mod}^{+} : 0.55

f_{m,z,d} :

Donde:

Clase de duración de la carga

Clase : Larga duración
Clase : Permanente

Clase de servicio

Clase : <u>Permanente</u>

2

f_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

$$k_h = min\{(150/h)^{0.2}; 1.3\}$$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

h: <u>120.00</u> mm g_M: <u>1.30</u>

g_M: Coeficiente parcial para las propiedades del material

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} \hspace{0.2cm} \hspace{$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.11 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{y,d}: \underbrace{0.011}_{240.00} \text{t}$ A: Área de la sección transversal $k_{cr}: \text{Factor que tiene en cuenta la influencia de las fendas}$ $k_{cr}: \underbrace{0.011}_{0.67} \text{t}$

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por:

$$f_{v,d} = k_{mod} \cdot f_{v,k} \big/ \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : __0.55

 $\mathbf{f}_{v,k}$: Resistencia característica a cortante $\mathbf{f}_{v,k}$: $\underline{40.77}$ kp/cm² \mathbf{g}_{M} : Coeficiente parcial para las propiedades del material \mathbf{g}_{M} : $\underline{1.30}$

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \le 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.213}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N1, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{t}_{\mathtt{d}}$: Tensión de cálculo a cortante, dada por: $\mathbf{t}_{\mathtt{z},\mathtt{d}}$: 3.67 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_a : Cortante de cálculo $V_{z,d}$: 0.394 t A: Área de la sección transversal A: 240.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: Resistencia característica a cortante $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

1.30

gм :

 $\mathbf{f}_{v,d}$: 17.25 kp/cm²

puente 7 a 6 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m, \gamma, d}}{f_{m, \gamma, d}} + k_m \cdot \frac{\sigma_{m, z, d}}{f_{m, z, d}} \leq 1$$

$$\eta = k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: _74.03 kp/cm²

 $\sigma_{m,d} = |M_d|/W_{el}$ Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{v,d}$: 0.592 t·m $\mathbf{M}_{z,d}$: 0.024 t·m

Wel: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 800.00 cm³ **W**_{el,z}: 480.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: _103.51_ kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

k_{h,y} : __1.00 **k**_{h,z} : 1.05

gm: Coeficiente parcial para las propiedades del material

g_M: 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

Se debe satisfacer:

Resistencia a flexión y tracción axial combinadas

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.749 V

puente 7 a 6 m Fecha: 03/07/25

$$\eta = \frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.548

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

s_{tod}: Tensión de cálculo a tracción paralela a la fibra, dada por:

s_{t,0,d}: 0.11 kp/cm²

$$\sigma_{t,0,d} = N_{t,0,d}/A$$

Donde:

N_{t.0.d}: Tracción axial de cálculo paralela a la fibra

 $N_{t,0,d}$: 0.027 t

A: Área de la sección transversal

A: 240.00 cm²

 $\mathbf{s}_{m,d}$: Tensión de cálculo a flexión, dada por:

 $S_{m,v,d}$: 74.03 kp/cm² $S_{m,z,d}$: 4.97 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $M_{y,d}$: 0.592 t·m M_{z.d}: 0.024 t⋅m

Wel: Módulo resistente elástico de la sección transversal

W_{el,y}: 800.00 cm³

 $\mathbf{f}_{t,0,d}$: Resistencia de cálculo a tracción paralela a la fibra, dada por:

 $W_{el,z}$: 480.00 cm³ $\mathbf{f}_{t,0,d}$: 60,38 kp/cm²

$$f_{t,0,d} = k_{mod} \cdot k_h \cdot f_{t,0,k} / \gamma_M$$

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 **k**_h: 1.00

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

 $\mathbf{f}_{t,0,k}$: Resistencia característica a tracción paralela a la fibra

 $\mathbf{f}_{t,0,k}$: 142.71 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gm: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 \mathbf{k}_{mod} : 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

 $k_{h,z}$: 1.05

k_h: Factor de altura, dado por:

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eie z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

puente 7 a 6 m Fecha: 03/07/25

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en

tracción

h: 120.00 mm gm: Coeficiente parcial para las propiedades del material gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

La comprobación no procede, ya que la barra no esta sometida a flexión y compresión combinadas.

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N10/N3

Perfil: GL-200x120 Material: Madera (C24)							
	Nuc	los			Característic	cas mecánic	as
Z 	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
	N10	N3	1.750	240.00	8000.00	2880.00	7153.92
	Notas: (1) Inero (2) Mom	Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme					
		Pandeo Pan			Pandeo lat	eo lateral	
Y		Pla	no XY	Plano XZ	Ala	sup.	Ala inf.
	β	1	.00	1.00	0.	00	0.00
	L _K	1.	750	1.750	0.0	000	0.000
	C ₁		-			1.000	
		ficiente de particul					

C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

kp/cm² S_{c,0,d} : 0.01

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

Donde:

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

0.001 cm² 240.00

A: Área de la sección transversal

f_{c,0,d} : kp/cm² 90.57

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

puente 7 a 6 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{o},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - \lambda_{rel}^{-2}}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

b_c: Factor asociado a la rectitud de las piezas

_{rel}: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,k}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $\mathbf{f}_{c,o,k}$: Resistencia característica a compresión paralela a <u>la</u> fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 $\mathbf{L}_{\mathbf{k}}$: Longitud de pandeo de la barra

i: Radio de giro

k_{mod}: 0.55

f_{c,0,k} : <u>214.07</u> kp/cm²

g_M: 1.30

 $\mathbf{c}_{c,y}$: 0.95 $\mathbf{c}_{c,z}$: 0.79

 k_y : 0.65 k_z : 0.92

b_c : 0.20 rel,y : 0.51

E_{0,k}: 75433.23 kp/cm²

0.86

 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm² y: 30.31 z: 50.52

34.64

mm

Página 104

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \leq 1$$

0.670

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m,d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}$: kp/cm² 69,30 S_{m,y,d} : kp/cm² 0.00

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{v,d}^{+}$: 0.554 t∙m $M_{v,d}$: 0.000 t∙m

Wel: Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{W}_{\mathsf{el,y}}$: 800.00 cm³ $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: kp/cm² 103.51 kp/cm² $\mathbf{f}_{m,y,d}$: 94.10

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

 $\mathbf{k_{mod}}^{+}$: 0.55 $\mathbf{k}_{\mathsf{mod}}$: 0.50

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración **Clase**: Permanente

Clase de servicio

Clase: **f**_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por:

3 **f**_{m,k} : 244.65 kp/cm² \mathbf{k}_{h} : 1.00

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales

a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \textbf{0.061}$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que el módulo resistente elástico de la sección respecto al eje z es inferior o igual al módulo resistente elástico respecto al eje y.

Resistencia de la sección transversal a flexión:

$\mathbf{s}_{\scriptscriptstylem,d}$: Tensión de cálculo a flexión, dada por:	$\mathbf{S_{m,z,d}}^+$:	6.62
	S _{m,z,d} :	0.00

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

$$\mathbf{M}_{a}$$
: Momento flector de cálculo $\mathbf{M}_{z,d}^{+}: \underbrace{0.032}_{0.000}$ $t \cdot m$

 \mathbf{W}_{el} : Módulo resistente elástico de la sección transversal $\mathbf{W}_{el,z}$: 480.00 cm³ $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por: $\mathbf{f}_{m,z,d}^{+}$: 108.23 kp/cm²

$$\mathbf{f}_{\mathsf{m,z,d}}$$
: 98.39 kp/cm²

$$f_{\text{m,d}} = k_{\text{mod}} \cdot k_{\text{h}} \cdot f_{\text{m,k}} \big/ \gamma_{\text{M}}$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad \mathbf{k}_{mod}^+ : 0.55

Donde:

Clase de duración de la carga

Clase : Larga duración

Clase de servicio

Clase : Permanente
Clase : 3

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm² \mathbf{k}_h : Factor de altura, dado por: \mathbf{k}_h : 1.05

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

$$k_h = min\{(150/h)^{0.2}; 1.3\}$$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

sección en tracción h: 120.00 mm g_M: Coeficiente parcial para las propiedades del material $g_M: 1.30$

kp/cm²

kp/cm²

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.012}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

t_a: Tensión de cálculo a cortante, dada por:

$$\mathbf{t}_{\mathsf{y,d}}$$
: 0.21 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 $\mathbf{V_d}$: Cortante de cálculo $\mathbf{V_{y,d}}$: 0.022 t \mathbf{A} : Área de la sección transversal \mathbf{A} : 240.00 cm² $\mathbf{k_{cr}}$: Factor que tiene en cuenta la influencia de las fendas $\mathbf{k_{cr}}$: 0.67

 $\mathbf{f}_{\mathbf{v},\mathbf{d}}$: Resistencia de cálculo a cortante, dada por:

$$\mathbf{f}_{v,d}$$
: 17.25 kp/cm²

 $f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_{M}$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: Resistencia característica a cortante $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: $\underline{40.77}$ kp/cm²

 g_M : Coeficiente parcial para las propiedades del material g_M : 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,a}} \le 1 \qquad \qquad h \; : \; \underline{\textbf{\textit{0.189}}} \; \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N3, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: \mathbf{t}_{zd} : 3.27 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

 V_d : Cortante de cálculo $V_{z,d}$: 0.350 t A: Área de la sección transversal A : 240.00 cm²

 \mathbf{k}_{cr} : Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) \mathbf{k}_{mod} : 0.55

 $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: Resistencia característica a cortante $\mathbf{f}_{\mathbf{v},\mathbf{k}}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material

gм :

1.30

puente 7 a 6 m

Listados

Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.712 🗸

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.530 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 69.30 kp/cm² $S_{m,z,d}$: 6.62 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}$: 0.554 t·m $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: 0.032 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 800.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 480.00 cm³ $\mathbf{f}_{m,y,d}$: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,y}$: 1.00 **k**_{h,z} : 1.05

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N10, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

$$\mathbf{s}_{\scriptscriptstyle{\mathsf{c},\mathsf{0},\mathsf{d}}}$$
: Tensión de cálculo a compresión paralela a la fibra, dada por:

$$S_{c,0,d}$$
: 0.01 kp/cm²

$$\sigma_{c0,d} = \left|N_{c,0,d}\right| / A$$

Donde:

$\mathbf{N}_{c,0,d}$: Compresión axial de cálculo paralela a la fibra
A: Área de la sección transversal

$$\mathbf{s}_{m,d}$$
: Tensión de cálculo a flexión, dada por:

$$\mathbf{A} : \underline{240.00} \text{ cm}^2$$

 $\mathbf{s}_{m,y,d} : \underline{69.30} \text{ kp/cm}^2$

$$\mathbf{s}_{\mathsf{m,z,d}}$$
: 6.62 kp/cm²

$$\sigma_{m,d} = \left| M_d \right| / W_{el}$$

Donde:

$$\mathbf{M}_{\mathsf{y,d}}$$
 : 0.554 t·m

$$\mathbf{M}_{\mathsf{z},\mathsf{d}}$$
 : 0.032 t·m $\mathbf{W}_{\mathsf{el},\mathsf{y}}$: 800.00 cm³

$$W_{el,z}$$
: 480.00 cm³

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

$$\mathbf{f}_{c,0,d}$$
: 90.57 kp/cm²

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

$$\mathbf{f}_{c,0,k}$$
: Resistencia característica a compresión paralela a la fibra \mathbf{g}_M : Coeficiente parcial para las propiedades del material

$$\mathbf{f}_{c,o,k}$$
 : 214.07 kp/cm²
g_M : 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

$$\mathbf{f}_{m,y,d}$$
: $\frac{103.51}{108.23}$ kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 7 a 6 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $\mathbf{k}_{h,y}$: 1.00 $\mathbf{k}_{h,z}$: 1.05

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

g_M: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

c_c: Factor de inestabilidad

h : <u>120.00</u> mm

gm : 1.30

 $\mathbf{k}_{m} : 0.70$ $\mathbf{c}_{c,y} : 0.95$

c_{c,z} : 0.79

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N4/N12

Perfil: GL-200x120 Material: Madera (C24)							
	Nuc	Nudos			Característic	cas mecánio	as
z 	Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
	N4	N12	1.750	240.00	8000.00	2880.00	7153.92
		Notas: (1) Inercia respecto al eje indicado (2) Momento de inercia a torsión uniforme					
			Pande	90		Pandeo la	teral
Y		Pla	no XY	Plano XZ	Ala	sup.	Ala inf.
	β	1	.00	1.00	0.	00	0.00
	L _K	1.	750	1.750	0.0	000	0.000
	C ₁ - 1.000						
	L _κ : Lon	iciente de p gitud de pa tor de mod		momento críti	co		

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h < 0.001 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

0.001

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

kp/cm² **S**_{c,0,d} : 0.01

$$\sigma_{c0,d} = \left|N_{c,0,d}\right| \! / \! A$$

Donde:

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

0.001 cm² 240.00

A: Área de la sección transversal

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

$$\mathbf{f}_{c,0,d}$$
: 90.57 kp/cm²

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

puente 7 a 6 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{0},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

g_M: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rel}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

b_c: Factor asociado a la rectitud de las piezas

_{rel}: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{\text{c,0,k}}}{E_{\text{0,k}}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $\mathbf{f}_{c,o,k}$: Resistencia característica a compresión paralela a <u>la</u> fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

L_k: Longitud de pandeo de la barra

i: Radio de giro

k_{mod}: 0.55

f_{c,0,k} : 214.07 kp/cm²

gm: 1.30

c_{c,y} : 0.95

c_{c,z}: 0.79

 $\mathbf{k_v}$: 0.65 $\mathbf{k_z}$: 0.92

b_c: 0.20 rel,y: 0.51 rel,z: 0.86

E₀,k : 75433.23 kp/cm²

 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm² $\mathbf{f}_{c,0,k}$: 30.31 $\mathbf{f}_{c,0,k}$: 50.52

 $egin{array}{llll} m{L}_{k,y} & : & 1750.00 & mm \\ m{L}_{k,z} & : & 1750.00 & mm \\ m{i}_y & : & 57.74 & mm \\ m{i}_z & : & 34.64 & mm \end{array}$

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \leq 1$$

0.670

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m,d}: Tensión de cálculo a flexión, dada por:

 $S_{m,y,d}$: kp/cm² 69,30 S_{m,y,d} : kp/cm² 0.00

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{v,d}^{+}$: 0.554 t∙m $M_{v,d}$: 0.000 t∙m $\mathbf{W}_{\mathsf{el,y}}$: cm³

Wel: Módulo resistente elástico de la sección transversal $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

800.00 $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$: kp/cm² 103.51 kp/cm² $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}$: 94.10

3

244.65

1.00

kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

 $\mathbf{k_{mod}}^{+}$: 0.55 $\mathbf{k}_{\mathsf{mod}}$: 0.50

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración **Clase**: Permanente

Clase:

f_{m,k} :

 \mathbf{k}_{h} :

Clase de servicio

f_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: **0.061**

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que el módulo resistente elástico de la sección respecto al eje z es inferior o igual al módulo resistente elástico respecto al eje v.

Resistencia de la sección transversal a flexión:

s_{m,d}: Tensión de cálculo a flexión, dada por:

S_{m,z,d} : 6.62 kp/cm² S_{m,z,d} : kp/cm² 0.00

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $M_{z,d}^+$: 0.032 t·m $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: t∙m 0.000

W_{el}: Módulo resistente elástico de la sección transversal

cm³ $W_{el,z}$: 480.00

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{\mathsf{m,z,d}}^{\phantom{\mathsf{m,z,d}}}$: kp/cm² 108.23 **f**_{m,z,d} : kp/cm² 98.39

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y el contenido de humedad

 $\mathbf{k_{mod}}^{+}$: 0.55 0.50 $\mathbf{k}_{\mathsf{mod}}$:

Donde:

Clase de duración de la carga

Clase⁺ : Larga duración

Clase de servicio

Clase: Permanente Clase : 3

g_M :

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{\mathsf{m},\mathsf{k}}$: 244.65 kp/cm² \mathbf{k}_{h} : 1.05

k_h: Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

$$k_h = min\{(150/h)^{0.2}; 1.3\}$$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

h: 120.00 1.30

gm: Coeficiente parcial para las propiedades del material

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.012}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por:

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V₁: Cortante de cálculo $V_{y,d}$: 0.022 t A: Área de la sección transversal A: 240.00 cm² **k**_{cr}: Factor que tiene en cuenta la influencia de las fendas **k**_{cr}: 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por:

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) 0.55

f_{vk}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm² gm: Coeficiente parcial para las propiedades del material 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{\textit{0.189}}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N4, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 3.27 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V_d: Cortante de cálculo $V_{z,d}$: 0.350 t A: Área de la sección transversal A: 240.00 cm²

k_{cr}: Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm² gm: Coeficiente parcial para las propiedades del material

gм :

1.30

 $\mathbf{t}_{v,d}$: 0.21 kp/cm²

 $\mathbf{f}_{v,d}$: 17.25 kp/cm²

puente 7 a 6 m Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m, \gamma, d}}{f_{m, \gamma, d}} + k_m \cdot \frac{\sigma_{m, z, d}}{f_{m, z, d}} \leq 1$$

h: 0.712 🗸

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.530 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 69.30 kp/cm²

$$\mathbf{s}_{\mathsf{m,z,d}}$$
: 6.62 kp/cm²

 $\sigma_{m,d} = |M_d|/W_{el}$ Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{y,d}$: 0.554 t·m $\mathbf{M}_{\mathsf{z},\mathsf{d}}$: 0.032 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 800.00 cm³ **W**_{el,z}: 480.00 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 103.51 kp/cm²

$$\mathbf{f}_{\mathsf{m,z,d}}$$
: 108.23 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

transversal

k_{mod}: Factor de modificación por la duración de la carga (Larga

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

duración) y el contenido de humedad (Clase de servicio 3) **f**_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm²

k_h: Factor de altura, dado por:

 $k_{h,y}$: 1.00 **k**_{h,z} : 1.05

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente

Listados

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

Donde

$$\mathbf{s}_{\mathsf{c,o,d}}$$
: Tensión de cálculo a compresión paralela a la fibra, dada por:

$$\sigma_{c0,d} = |N_{c,0,d}|/A$$

Donde:

$$\mathbf{N}_{\mathsf{c},\mathsf{o},\mathsf{d}}$$
: Compresión axial de cálculo paralela a la fibra

$$N_{c,0,d}$$
: 0.001 t

$$\mathbf{s}_{m,y,d}$$
 : 69.30 kp/cm²
 $\mathbf{s}_{m,z,d}$: 6.62 kp/cm²

$$\sigma_{m,d} = |M_d|/W_e$$

Donde:

$$\mathbf{M}_{z,d}$$
 : 0.032 t·m
 $\mathbf{W}_{el,y}$: 800.00 cm³

$$W_{el,z}$$
: 480.00 cm³

$$\mathbf{f}_{c,0,d}$$
: Resistencia de cálculo a compresión paralela a la fibra, dada por:

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

$$\mathbf{k}_{mod}$$
: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

$$\mathbf{f}_{c,o,k}$$
: Resistencia característica a compresión paralela a la fibra \mathbf{g}_{M} : Coeficiente parcial para las propiedades del material

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

$$\mathbf{f}_{m,d}$$
: Resistencia de cálculo a flexión, dada por:

$$\mathbf{f}_{m,y,d}$$
: 103.51 kp/cm² $\mathbf{f}_{m,z,d}$: 108.23 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

puente 7 a 6 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión $\mathbf{f}_{m,k}$: 244.65 kp/cm²

 \mathbf{k}_{h} : Factor de altura, dado por:

 $\mathbf{k}_{h,y}$: 1.00 $\mathbf{k}_{h,z}$: 1.05

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza superiores o iguales a 150 mm:

 $k_{h} = 1.0$

Eje z:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

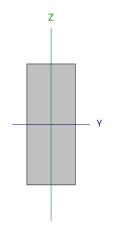
c_c: Factor de inestabilidad

h : <u>120.00</u> mm

gм : <u>1.30</u>

 $\mathbf{k}_{m} : 0.70$ $\mathbf{c}_{c,y} : 0.95$ $\mathbf{c}_{c,z} : 0.79$

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)


La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N11/N13

Perfil: S-100x40 Material: Madera (C24)

Nudos			Características mecánicas				
Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)	
N11	N13	0.600	40.00	333.33	53.33	157.44	

- Notas:

 (1) Inercia respecto al eje indicado
 (2) inercia a torsión u (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral		
	Plano XY	Plano XZ	Ala sup.	Ala inf.	
β	1.00	1.00	0.00	0.00	
L_{K}	0.600	0.600	0.000	0.000	
C ₁	-	-	1.0	00	

Notación:

- b: Coeficiente de pandeo
- L_κ: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h: 0.017 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h: 0.017 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

h: 0.022 V

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35 PP+1.35 CM1+1.5 Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

 $S_{c,0,d}$: 1.55

kp/cm²

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d}$: 0.062

A: Área de la sección transversal

A: cm² 40.00

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

 $\mathbf{f}_{c,0,d}$: 90.57 kp/cm²

$$f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$$

Donde:

puente 7 a 6 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{o},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rei}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

b_c: Factor asociado a la rectitud de las piezas

_{rel}: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,k}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $f_{\text{c,o,k}} .$ Resistencia característica a compresión paralela a la fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 $\mathbf{L}_{\mathbf{k}}$: Longitud de pandeo de la barra

i: Radio de giro

 \mathbf{k}_{mod} : 0.55 kp/cm²

g_M: 1.30

c_{c,y} : 0.99

C_{c,z}: 0.77

$$\mathbf{k_{y}}$$
: 0.57 $\mathbf{k_{z}}$: 0.95

b_c: 0.20

rel,y: 0.35 rel,z: 0.88

E_{0,k}: 75433.23 kp/cm²

f_{c,Q,k} : <u>214.07</u> kp/cm²

y: 20.78 z: 51.96

_{к,у}: <u>600.00</u> mm

 $\mathbf{L}_{\mathbf{k},\mathbf{z}}: \underline{600.00} \quad \mathsf{mm}$ $\mathbf{i}_{\mathbf{y}}: \underline{28.87} \quad \mathsf{mm}$

i_z: 11.55 mm

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \textbf{0.548}$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

$\mathbf{s}_{\scriptscriptstylem,d}$: Tensión de cálculo a flexión, dada por:	S _{m,y,d} :	61.50	kp/cm²
	S _{m,y,d} :	0.00	kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M ₄: Momento flector de cálculo	$M_{y,d}^{+}$:	0.041	t·m
	M _{y,d} :	0.000	t∙m
\mathbf{W}_{el} : Módulo resistente elástico de la sección transversal	$\mathbf{W}_{el,y}$:	66.67	cm ³
$\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:	f _{m,y,d} :	112.25	kp/cm²
	f _{m,y,d} :	102.04	kp/cm ²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

Donde:

 \mathbf{k}_{mod} : Factor de modificación para la duración de la carga y 0.55 el contenido de humedad 0.50 $\mathbf{k}_{\mathsf{mod}}$:

Donde:

Clase⁺ : Larga duración Clase de duración de la carga

Clase: Permanente Clase de servicio Clase: 3

f_{m,k}: Resistencia característica a flexión **f**_{m,k} : 244.65 kp/cm² k_h: Factor de altura, dado por: **k**_h : 1.08

Para cantos (flexión) o anchos (tracción) de piezas

rectangulares de madera maciza inferiores a 150 mm:

$$k_h = min\{(150/h)^{0.2}; 1.3\}$$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

mm 100.00 gm: Coeficiente parcial para las propiedades del material 1.30 gм :

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{y,d}}{f_{y,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.009}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por:

ensión de cálculo a cortante, dada por:
$$\mathbf{t}_{y,d} : \underline{0.16} \text{ kp/cm}^2$$

$$\tau_d = \frac{3}{2} \cdot \frac{|V_d|}{A \cdot k}$$

Donde:

V₁: Cortante de cálculo $V_{y,d}$: 0.003 t A: Área de la sección transversal A: 40.00 cm² **k**_{cr}: Factor que tiene en cuenta la influencia de las fendas **k**_{cr}: 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{_{v,d}} = k_{_{mod}} \cdot f_{_{v,k}} \big/ \gamma_{_{M}}$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{v,k}: 40.77 kp/cm² f_{vk}: Resistencia característica a cortante

gm: Coeficiente parcial para las propiedades del material 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\textbf{0.241}} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N11, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 4.15 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V_d: Cortante de cálculo $V_{z,d}$: 0.074 t A: Área de la sección transversal A: 40.00 cm²

k_{cr}: Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material gm : 1.30

puente 7 a 6 m

Listados

Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{\text{m,y,d}}}{f_{\text{m,y,d}}} + k_{\text{m}} \cdot \frac{\sigma_{\text{m,z,d}}}{f_{\text{m,z,d}}} \leq 1$$

h: 0.581 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.430 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 61.50 kp/cm² $S_{m,z,d}$: 6.31 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathbf{y},\mathbf{d}}$: 0.041 t·m $\mathbf{M}_{z,d}$: 0,002 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 66.67 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 26.67 cm³ $\mathbf{f}_{m,y,d}$: 112.25 kp/cm²

 $\mathbf{f}_{m,z,d}$: 134.56 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: Resistencia característica a flexión

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² $\mathbf{k}_{h,y}$: 1.08

k_h: Factor de altura, dado por:

k_{h,z} : 1.30

gm: Coeficiente parcial para las propiedades del material

gм : 1.30

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

$$\mathbf{s}_{\text{c.o.d}}$$
: Tensión de cálculo a compresión paralela a la fibra, dada por:

$$\sigma_{c0,d} = |N_{c,0,d}|/A$$

Donde:

$$\mathbf{N}_{\mathsf{c},\mathsf{o},\mathsf{d}}$$
: Compresión axial de cálculo paralela a la fibra

$$N_{c,0,d}$$
 : 0.062 t

$$\mathbf{A} : \underline{40.00} \text{ cm}^2$$

 $\mathbf{s}_{m,y,d} : \underline{61.50} \text{ kp/cm}^2$

$$\mathbf{s}_{\scriptscriptstyle{\mathsf{m,d}}}$$
: Tensión de cálculo a flexión, dada por:

$$\mathbf{s}_{\mathsf{m,z,d}}$$
: 6.31 kp/cm²

$$\sigma_{m,d} = \left| M_d \right| / W_{el}$$

Donde:

$$\mathbf{M}_{\mathbf{y},\mathbf{d}}$$
 : 0.041 t·m $\mathbf{M}_{\mathbf{z},\mathbf{d}}$: 0.002 t·m

$$\mathbf{f}_{\mathsf{c},\mathsf{o},\mathsf{d}}$$
: Resistencia de cálculo a compresión paralela a la fibra, dada por:

Donde:

$$\mathbf{k}_{mod}$$
 : 0.55
 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm²

$$\mathbf{f}_{c,0,k}$$
: Resistencia característica a compresión paralela a la fibra $\mathbf{g}_{\mathbf{m}}$: Coeficiente parcial para las propiedades del material

$$\mathbf{f}_{c,0,k}$$
: 214.07 Kp/cm·

$$\mathbf{f}_{m,d}$$
: Resistencia de cálculo a flexión, dada por:

$$\mathbf{f}_{m,y,d}$$
 : 112.25 kp/cm² $\mathbf{f}_{m,z,d}$: 134.56 kp/cm²

$$f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$$

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

puente 7 a 6 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{m,k}$: Resistencia característica a flexión

k_h: Factor de altura, dado por:

 $\mathbf{f}_{m,k}$: <u>244.65</u> kp/cm² $\mathbf{k}_{h,y}$: <u>1.08</u>

k_{h,z}: 1.30

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = \min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

h: 100.00 mm

Eje z

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

h: <u>40.00</u> mm g_M: <u>1.30</u>

 $g_{\mathbf{M}}$: Coeficiente parcial para las propiedades del material

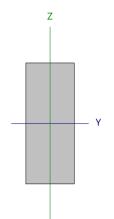
 \mathbf{k}_m : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

c_c: Factor de inestabilidad

 $\mathbf{k}_{m} : 0.70$ $\mathbf{c}_{c,y} : 0.99$

C_{c,z} : 0.77

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)


La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

puente 7 a 6 m Fecha: 03/07/25

Barra N13/N12

Perfil: S-100x40	
Material: Madera	(C24)

Nuc	los	Longitud	Características mecánica			as
Inicial	Final	Longitud (m)	Área (cm²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	I _t ⁽²⁾ (cm4)
N13	N12	0.600	40.00	333.33	53.33	157.44

- Notas:

 (1) Inercia respecto al eje indicado
 (2) inercia a torsión un
 - (2) Momento de inercia a torsión uniforme

	Pan	deo	Pandeo lateral				
	Plano XY Plano XZ		Ala sup.	Ala inf.			
β	1.00	1.00	0.00	0.00			
L_{K}	0.600	0.600	0.000	0.000			
C ₁	-	-	1.0	00			

Notación:

- b: Coeficiente de pandeo
- L_κ: Longitud de pandeo (m)
- C1: Factor de modificación para el momento crítico

Resistencia a tracción uniforme paralela a la fibra (CTE DB SE-M: 6.1.2)

La comprobación no procede, ya que no hay axil de tracción.

Resistencia a compresión uniforme paralela a la fibra (CTE DB SE-M: 6.1.4 - 6.3.2)

Se debe satisfacer:

Resistencia de la sección transversal a compresión

$$\eta = \frac{\sigma_{c,0,d}}{f_{c,0,d}} \leq 1$$

h: 0.017 V

Resistencia a pandeo por flexión en el eje y

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} \leq 1$$

h: 0.017 V

Resistencia a pandeo por flexión en el eje z

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} \leq 1$$

h: 0.022 V

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 1.35 PP+1.35 CM1+1.5 Q1.

Donde:

 $\mathbf{s}_{c,o,d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

 $S_{c,0,d}$: 1.55

kp/cm²

$$\sigma_{c0,d} = \left| N_{c,0,d} \right| / A$$

Donde:

 $\mathbf{N}_{\mathsf{c},\mathsf{0},\mathsf{d}}$: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d}$: 0.062

A: Área de la sección transversal

A : cm² 40.00

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

$$\mathbf{f}_{c,0,d}$$
: 90.57 kp/cm²

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

puente 7 a 6 m Fecha: 03/07/25

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{f}_{\mathsf{c},\mathsf{0},\mathsf{k}}$: Resistencia característica a compresión paralela a la fibra

gm: Coeficiente parcial para las propiedades del material

Resistencia a pandeo: (CTE DB SE-M: 6.3.2)

c_c: Factor de inestabilidad, dado por:

$$\chi_c = \frac{1}{k + \sqrt{k^2 - {\lambda_{rei}}^2}}$$

Donde:

$$k = 0.5 \cdot \left(1 + \beta_c \cdot \left(\lambda_{rel} - 0.3\right) + {\lambda_{rel}}^2\right)$$

Donde:

 $\mathbf{b_c}$: Factor asociado a la rectitud de las piezas

_{rel}: Esbeltez relativa, dada por:

$$\lambda_{\text{rel}} = \frac{\lambda}{\pi} \cdot \sqrt{\frac{f_{c,0,k}}{E_{0,k}}}$$

Donde:

 $\mathbf{E}_{0,k}$: Valor del quinto percentil del módulo de elasticidad paralelo a la fibra

 $f_{\text{c,o,k}} .$ Resistencia característica a compresión paralela a la fibra

: Esbeltez mecánica, dada por:

$$\lambda = \frac{L_k}{i}$$

Donde:

 $\mathbf{L}_{\mathbf{k}}$: Longitud de pandeo de la barra

i: Radio de giro

 \mathbf{k}_{mod} : 0.55 kp/cm²

gm: 1.30

c_{c,y}: 0.99 **c**_{c,z}: 0.77

k_z: 0.95

b_c: 0.20 rel,y: 0.35 rel,z: 0.88

E_{0,k}: 75433.23 kp/cm²

f_{c,0,k} : <u>214.07</u> kp/cm

y: 20.78 z: 51.96

 $\mathbf{L}_{\mathbf{k},\mathbf{v}} : \underline{600.00} \quad \mathsf{mm}$ $\mathbf{L}_{\mathbf{k},\mathbf{z}} : \underline{600.00} \quad \mathsf{mm}$

i_y: 28.87 mm

i_z : <u>11.55</u> mm

pue

Listados

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión en el eje y (CTE DB SE-M: 6.1.6 - 6.3.3)

Se debe satisfacer:

Resistencia de la sección transversal a flexión:

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} \le 1$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

No se comprueba la resistencia a vuelco lateral, ya que la correspondiente longitud de pandeo es nula.

Resistencia de la sección transversal a flexión:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\sigma_{m,d} = |M_d|/W_{el}$

Donde:

M_d: Momento flector de cálculo

W_{el}: Módulo resistente elástico de la sección transversal

 $\boldsymbol{f}_{\text{m,d}} \text{: Resistencia de cálculo a flexión, dada por:}$

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

 $\mathbf{k}_{\mathsf{mod}}$: Factor de modificación para la duración de la carga y el contenido de humedad

Donde:

Clase de duración de la carga

Clase de servicio

f_{m,k}: Resistencia característica a flexión

 \mathbf{k}_h : Factor de altura, dado por:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = \min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

gm: Coeficiente parcial para las propiedades del material

 $S_{m,y,d}^+$:

 $M_{v,d}^+$:

 $M_{v,d}$:

 $\mathbf{W}_{\mathsf{el,y}}$:

 $\mathbf{f}_{\mathsf{m},\mathsf{y},\mathsf{d}}^{\phantom{\mathsf{d}}}$:

 $\mathbf{f}_{m,y,d}$:

 $\mathbf{k}_{\mathsf{mod}}$:

Clase :

Clase:

f_{m,k} :

k_h :

S_{m,y,d} :

<u>100.00</u> mm

0.548

61.50

0.00

0.041

0.000

66.67

112.25

102.04

0.55

0.50

Permanente

3

244.65

1.08

Clase⁺ : Larga duración

kp/cm²

kp/cm²

t∙m

t∙m

cm³

kp/cm²

kp/cm²

kp/cm²

g_M : 1.30

Resistencia a flexión en el eje z (CTE DB SE-M: 6.1.6 - 6.3.3)

La comprobación no procede, ya que no hay momento flector.

puente 7 a 6 m Fecha: 03/07/25

Resistencia a cortante en el eje y (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{\gamma,d}}{f_{\nu,d}} \leq 1 \hspace{1cm} \text{h} \hspace{0.2cm} : \hspace{0.2cm} \underline{\hspace{0.2cm} 0.009} \hspace{0.2cm} \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce para la combinación de acciones 0.8·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{v,d}$: 0.16 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V₁: Cortante de cálculo $V_{y,d}$: 0.003 t A: Área de la sección transversal A: 40.00 cm²

k_{cr}: Factor que tiene en cuenta la influencia de las fendas **k**_{cr}: 0.67 $\mathbf{f}_{v,d}$: 17.25 kp/cm²

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por:

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{v,k}: 40.77 kp/cm² f_{vk}: Resistencia característica a cortante

gm: Coeficiente parcial para las propiedades del material 1.30

Resistencia a cortante en el eje z (CTE DB SE-M: 6.1.8)

Se debe satisfacer:

$$\eta = \frac{\tau_{z,d}}{f_{v,a}} \le 1 \qquad \qquad h : \underline{0.241} \quad \checkmark$$

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N12, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·Q1.

Donde:

 \mathbf{t}_{d} : Tensión de cálculo a cortante, dada por: $\mathbf{t}_{z,d}$: 4.15 kp/cm²

$$\tau_d = \frac{3}{2} \cdot \frac{\left|V_d\right|}{A \cdot k_{cr}}$$

Donde:

V_d: Cortante de cálculo $V_{z,d}$: 0.074 t A: Área de la sección transversal A: 40.00 cm²

k_{cr}: Factor que tiene en cuenta la influencia de las fendas \mathbf{k}_{cr} : 0.67

 $\mathbf{f}_{v,d}$: Resistencia de cálculo a cortante, dada por: $\mathbf{f}_{v,d}$: 17.25 kp/cm²

$$f_{v,d} = k_{mod} \cdot f_{v,k} / \gamma_M$$

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3) $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{v,k}: Resistencia característica a cortante $\mathbf{f}_{v,k}$: 40.77 kp/cm²

gm: Coeficiente parcial para las propiedades del material gm : 1.30

puente 7 a 6 m

Listados

Fecha: 03/07/25

Resistencia a torsión (CTE DB SE-M: 6.1.9)

La comprobación no procede, ya que no hay momento torsor.

Resistencia a flexión esviada (CTE DB SE-M: 6.1.7)

Se debe satisfacer:

Resistencia a flexión esviada

$$\eta = \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.581 V

$$\eta = k_{\mathsf{m}} \cdot \frac{\sigma_{\mathsf{m},\mathsf{y},\mathsf{d}}}{f_{\mathsf{m},\mathsf{y},\mathsf{d}}} + \frac{\sigma_{\mathsf{m},\mathsf{z},\mathsf{d}}}{f_{\mathsf{m},\mathsf{z},\mathsf{d}}} \leq 1$$

h: 0.430 V

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Donde:

s_{m.d}: Tensión de cálculo a flexión, dada por:

 $\mathbf{s}_{m,y,d}$: 61.50 kp/cm² $S_{m,z,d}$: 6.31 kp/cm²

$$\sigma_{m,d} = |M_d|/W_{el}$$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathbf{y},\mathbf{d}}$: 0.041 t·m $\mathbf{M}_{z,d}$: 0,002 t·m

W_{el}: Módulo resistente elástico de la sección transversal

 $W_{el,y}$: 66.67 cm³

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

W_{el,z}: 26.67 cm³ $\mathbf{f}_{m,y,d}$: 112.25 kp/cm² $\mathbf{f}_{m,z,d}$: 134.56 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga

duración) y el contenido de humedad (Clase de servicio 3)

f_{m,k}: Resistencia característica a flexión **k**_h: Factor de altura, dado por:

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

 $\mathbf{f}_{m,k}$: 244.65 kp/cm² $\mathbf{k}_{h,y}$: 1.08

k_{h,z} : 1.30 gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

gм : 1.30

 $k_m : 0.70$

Resistencia a flexión y tracción axial combinadas (CTE DB SE-M: 6.2.2)

La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

puente 7 a 6 m Fecha: 03/07/25

Resistencia a flexión y compresión axial combinadas (CTE DB SE-M: 6.2.3)

El esfuerzo solicitante de cálculo pésimo se produce en el nudo N13, para la combinación de acciones 1.35·PP+1.35·CM1+1.5·O1.

Se debe satisfacer:

Resistencia de la sección transversal a flexión y compresión combinados

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,\gamma,d}}{f_{m,\gamma,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.581 V

$$\eta = \left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + k_m \cdot \frac{\sigma_{m,\gamma,d}}{f_{m,\nu,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a pandeo para flexión y compresión combinados

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,y} \cdot f_{c,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

h: 0.598 V

$$\eta = \frac{\sigma_{c,0,d}}{\chi_{c,z} \cdot f_{c,0,d}} + k_m \cdot \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

Resistencia a vuelco lateral para flexión y compresión combinados No es necesaria la comprobación de resistencia a vuelco lateral ya que la longitud de vuelco lateral es nula.

 $\mathbf{s}_{c.o.d}$: Tensión de cálculo a compresión paralela a la fibra, dada por:

S_{c,0,d}: 1.55 kp/cm²

$$\sigma_{c0,d} = |N_{c,0,d}|/A$$

Donde:

N_{c.0.d}: Compresión axial de cálculo paralela a la fibra

 $N_{c,0,d}$: 0.062 t 40.00 cm²

A: Área de la sección transversal

61.50 kp/cm² kp/cm² $S_{m,z,d}$: 6.31

$$\mathbf{s}_{\mathsf{m,d}}$$
: Tensión de cálculo a flexión, dada por:

 $\sigma_{m,d} = |M_d|/W_{el}$

Donde:

M_d: Momento flector de cálculo

 $\mathbf{M}_{\mathsf{y,d}}$: 0.041 t·m

Wel: Módulo resistente elástico de la sección transversal

 $\mathbf{M}_{z,d}$: $0.0\underline{02}$ t·m $W_{el,y}: 66.67 \text{ cm}^3$

W_{el,z}: 26.67 cm³

 $\mathbf{f}_{c,0,d}$: Resistencia de cálculo a compresión paralela a la fibra, dada por:

 $\mathbf{f}_{c,0,d}$: 90.57 kp/cm²

 $f_{c,0,d} = k_{mod} \cdot f_{c,0,k} / \gamma_M$

Donde:

k_{mod}: Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

 $\mathbf{k}_{\mathsf{mod}}$: 0.55 $\mathbf{f}_{c,0,k}$: 214.07 kp/cm²

 $\mathbf{f}_{c,0,k}$: Resistencia característica a compresión paralela a la fibra gm: Coeficiente parcial para las propiedades del material

gм: 1.30

 $\mathbf{f}_{m,d}$: Resistencia de cálculo a flexión, dada por:

 $\mathbf{f}_{m,y,d}$: 112.25 kp/cm² $\mathbf{f}_{m,z,d}$: 134.56 kp/cm²

 $f_{m,d} = k_{mod} \cdot k_h \cdot f_{m,k} / \gamma_M$

puente 7 a 6 m Fecha: 03/07/25

Donde:

 \mathbf{k}_{mod} : Factor de modificación por la duración de la carga (Larga duración) y el contenido de humedad (Clase de servicio 3)

f_{m,k}: Resistencia característica a flexión

k_h: Factor de altura, dado por:

 $\mathbf{k}_{\mathsf{mod}}$: 0.55

f_{m,k}: 244.65 kp/cm²

 $\mathbf{k}_{h,y}$: __1.08 **k**_{h,z}: 1.30

Eje y:

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = \min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

h : 100.00 mm

Para cantos (flexión) o anchos (tracción) de piezas rectangulares de madera maciza inferiores a 150 mm:

 $k_h = \min\{(150/h)^{0.2}; 1.3\}$

Donde:

h: Canto en flexión o mayor dimensión de la sección en tracción

40.00 mm 1.30

gm: Coeficiente parcial para las propiedades del material

 \mathbf{k}_{m} : Factor que tiene en cuenta el efecto de redistribución de tensiones bajo flexión esviada y la falta de homogeneidad del material en la sección transversal

 k_m : 0.70 c.: Factor de inestabilidad C_{c,y}:

0.99 C_{c,z}: 0.77

Resistencia a cortante y torsor combinados (CTE DB SE-M: 6.1.8 - 6.1.9, Criterio de CYPE)

La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

Fecha: 03/07/25

2.3.2.5. Comprobaciones E.L.U. (Resumido)

_	_ COMPROBACIONES (CTE DB SE-M)											
Barras	N _{t,0,d}	N _{c,0,d}	M _{y,d}	M _{z,d}	V _{y,d}	$V_{z,d}$	M _{x,d}	$M_{y,d}M_{z,d}$	$N_{t,0,d}M_{y,d}M_{z,d}$	$N_{c,0,d}M_{y,d}M_{z,d}$	$M_{x,d}V_{y,d}V_{z,d}$	Estado
N1/N11	η = 0.2	N.P. ⁽¹⁾	x: 1.75 m η = 71.5	x: 1.75 m η = 4.6	η = 0.6	x: 0 m η = 21.3	N.P. ⁽²⁾	x: 1.75 m η = 74.7	x: 1.75 m η = 74.9	N.P. ⁽³⁾	N.P. ⁽⁴⁾	CUMPLE h = 74.9
N11/N7	N.P. ⁽⁵⁾	η = 0.2	x: 1.75 m η = 91.0	x: 1.75 m η = 6.5	η = 1.8	x: 0 m η = 7.1	N.P. ⁽²⁾	x: 1.75 m η = 95.6	N.P. ⁽⁶⁾	x: 1.75 m η = 95.7	N.P. ⁽⁴⁾	CUMPLE h = 95.7
N7/N9	N.P. ⁽⁵⁾	η = 0.2	x: 0 m η = 91.0	x: 0 m η = 6.5	η = 1.8	x: 1.75 m η = 7.1	N.P. ⁽²⁾	x: 0 m η = 95.6	N.P. ⁽⁶⁾	x: 0 m η = 95.7	N.P. ⁽⁴⁾	CUMPLE h = 95.7
N9/N2	η = 0.2	N.P. ⁽¹⁾	x: 0 m η = 71.5	x: 0 m η = 4.6	η = 0.6	x: 1.75 m η = 21.3	N.P. ⁽²⁾	x: 0 m η = 74.7	x: 0 m η = 74.9	N.P. ⁽³⁾	N.P. ⁽⁴⁾	CUMPLE h = 74.9
N2/N6	N.P. ⁽⁵⁾	η = 8.0	x: 0.6 m η = 19.8	N.P. ⁽⁷⁾	η = 4.9	x: 0 m η = 14.3	η = 6.7	x: 0.6 m η = 29.9	N.P. ⁽⁶⁾	x: 0.6 m η = 36.3	x: 0 m η = 20.9	CUMPLE h = 36.3
N6/N3	N.P. ⁽⁵⁾	η = 8.0	x: 0 m η = 19.8	N.P. ⁽⁷⁾	η = 6.4	x: 0.6 m η = 10.3	η = 8.6	x: 0 m η = 29.9	N.P. ⁽⁶⁾	x: 0 m η = 36.3	x: 0.6 m η = 18.8	CUMPLE h = 36.3
N4/N12	N.P. ⁽⁵⁾	η < 0.1	x: 1.75 m η = 67.0	x: 1.75 m η = 6.1	η = 1.2	x: 0 m η = 18.9	N.P. ⁽²⁾	x: 1.75 m η = 71.2	N.P. ⁽⁶⁾	x: 1.75 m η = 71.2	N.P. ⁽⁴⁾	CUMPLE h = 71.2
N12/N8	η < 0.1	N.P. ⁽¹⁾	x: 1.75 m η = 93.6	x: 1.75 m η = 7.2	η = 2.1	x: 0 m η = 9.8	N.P. ⁽²⁾	x: 1.75 m η = 98.7	x: 1.75 m η = 98.7	N.P. ⁽³⁾	N.P. ⁽⁴⁾	CUMPLE h = 98.7
N8/N10	η < 0.1	N.P. ⁽¹⁾	x: 0 m η = 93.6	x: 0 m η = 7.2	η = 2.1	x: 1.75 m η = 9.8	N.P. ⁽²⁾	x: 0 m η = 98.7	x: 0 m η = 98.7	N.P. ⁽³⁾	N.P. ⁽⁴⁾	CUMPLE h = 98.7
N10/N3	N.P. ⁽⁵⁾	η < 0.1	x: 0 m η = 67.0	x: 0 m η = 6.1	η = 1.2	x: 1.75 m η = 18.9	N.P. ⁽²⁾	x: 0 m η = 71.2	N.P. ⁽⁶⁾	x: 0 m η = 71.2	N.P. ⁽⁴⁾	CUMPLE h = 71.2
N1/N5	N.P. ⁽⁵⁾	η = 8.0	x: 0.6 m η = 19.7	N.P. ⁽⁷⁾	η = 4.9	x: 0 m η = 14.3	η = 6.7	x: 0.6 m η = 29.9	N.P. ⁽⁶⁾	x: 0.6 m η = 36.3	x: 0 m η = 20.9	CUMPLE h = 36.3
N5/N4	N.P. ⁽⁵⁾	η = 8.0	x: 0 m η = 19.7	N.P. ⁽⁷⁾	η = 6.4	x: 0.6 m η = 10.2	η = 8.6	x: 0 m η = 29.9	N.P. ⁽⁶⁾	x: 0 m η = 36.3	x: 0.6 m η = 18.8	CUMPLE h = 36.3
N7/N14	N.P. ⁽⁵⁾	η = 2.3	x: 0.6 m η = 54.5	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 0 m η = 24.1	N.P. ⁽²⁾	N.P. ⁽⁹⁾	N.P. ⁽⁶⁾	x: 0.6 m η = 56.4	N.P. ⁽⁴⁾	CUMPLE h = 56.4
N14/N8	N.P. ⁽⁵⁾	η = 2.3	x: 0 m η = 54.5	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 0.6 m η = 24.1	N.P. ⁽²⁾	N.P. ⁽⁹⁾	N.P. ⁽⁶⁾	x: 0 m η = 56.4	N.P. ⁽⁴⁾	CUMPLE h = 56.4
N9/N15	N.P. ⁽⁵⁾	η = 2.2	x: 0.6 m η = 54.8	N.P. ⁽⁷⁾	η = 0.9	x: 0 m η = 24.1	N.P. ⁽²⁾	x: 0.6 m η = 58.1	N.P. ⁽⁶⁾	x: 0.6 m η = 59.8	N.P. ⁽⁴⁾	CUMPLE h = 59.8
N15/N10	N.P. ⁽⁵⁾	η = 2.2	x: 0 m η = 54.8	N.P. ⁽⁷⁾	η = 0.9	x: 0.6 m η = 24.1	N.P. ⁽²⁾	x: 0 m η = 58.1	N.P. ⁽⁶⁾	x: 0 m η = 59.8	N.P. ⁽⁴⁾	CUMPLE h = 59.8
N11/N13	N.P. ⁽⁵⁾	η = 2.2	x: 0.6 m η = 54.8	N.P. ⁽⁷⁾	η = 0.9	x: 0 m η = 24.1	N.P. ⁽²⁾	x: 0.6 m η = 58.1	N.P. ⁽⁶⁾	x: 0.6 m η = 59.8	N.P. ⁽⁴⁾	CUMPLE h = 59.8
N13/N12	N.P. ⁽⁵⁾	η = 2.2	x: 0 m η = 54.8	N.P. ⁽⁷⁾	η = 0.9	x: 0.6 m η = 24.1	N.P. ⁽²⁾	x: 0 m η = 58.1	N.P. ⁽⁶⁾	x: 0 m η = 59.8	N.P. ⁽⁴⁾	CUMPLE h = 59.8
N4/N11	η = 2.3	N.P. ⁽¹⁾	x: 1.273 m η = 22.8	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 0 m η = 18.1	N.P. ⁽²⁾	x: 0 m η = 22.0	x: 1.273 m η = 25.0	N.P. ⁽³⁾	N.P. ⁽⁴⁾	CUMPLE h = 25.0
N11/N8	η = 4.9	N.P. ⁽¹⁾	x: 1.061 m η = 26.6	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 0 m η = 16.1	N.P. ⁽²⁾	N.P. ⁽⁹⁾	x: 1.061 m η = 31.5	N.P. ⁽³⁾	N.P. ⁽⁴⁾	CUMPLE h = 31.5
N8/N9	η = 4.9	N.P. ⁽¹⁾	x: 1.061 m η = 26.6	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 0 m η = 16.1	N.P. ⁽²⁾	N.P. ⁽⁹⁾	x: 1.061 m η = 31.5	N.P. ⁽³⁾	N.P. ⁽⁴⁾	CUMPLE h = 31.5
N9/N3	η = 2.3	N.P. ⁽¹⁾	x: 0.849 m η = 22.8	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 2.122 m η = 18.1	N.P. ⁽²⁾	x: 2.122 m η = 22.0	x: 0.849 m η = 25.0	N.P. ⁽³⁾	N.P. ⁽⁴⁾	CUMPLE h = 25.0
N13/N14	N.P. ⁽⁵⁾	η = 8.0	x: 0.875 m η = 35.3	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 1.75 m η = 23.6	N.P. ⁽²⁾	N.P. ⁽⁹⁾	N.P. ⁽⁶⁾	x: 0.875 m $\eta = 37.0$	N.P. ⁽⁴⁾	CUMPLE h = 37.0
N14/N15	N.P. ⁽⁵⁾	η = 8.0	x: 0.875 m η = 35.3	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 1.75 m η = 23.6	N.P. ⁽²⁾	N.P. ⁽⁹⁾	N.P. ⁽⁶⁾	x: 0.875 m η = 37.0	N.P. ⁽⁴⁾	CUMPLE h = 37.0
N15/N6	N.P. ⁽⁵⁾	η = 6.8	x: 0.875 m η = 35.7	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 1.75 m η = 23.6	N.P. ⁽²⁾	N.P. ⁽⁹⁾	N.P. ⁽⁶⁾	x: 0.875 m η = 37.1	N.P. ⁽⁴⁾	CUMPLE h = 37.1
N5/N13	N.P. ⁽⁵⁾	η = 6.8	x: 0.875 m η = 35.7	N.P. ⁽⁷⁾	N.P. ⁽⁸⁾	x: 1.75 m η = 23.6	N.P. ⁽²⁾	N.P. ⁽⁹⁾	N.P. ⁽⁶⁾	x: 0.875 m $\eta = 37.1$	N.P. ⁽⁴⁾	CUMPLE h = 37.1
Notación:												

- Notación:

 Notación:
- Comprobaciones que no proceden (N.P.):

 - mprobaciones que no proceden (N.P.):

 "La comprobación no procede, ya que no hay axil de compresión.

 La comprobación no procede, ya que no hay momento torsor.

 "La comprobación no procede, ya que la barra no está sometida a flexión y compresión combinadas.

 "La comprobación no procede, ya que la barra no está sometida a momento torsor ni a esfuerzo cortante.

 "La comprobación no procede, ya que no hay axil de tracción.

 "La comprobación no procede, ya que no hay interacción entre axil de tracción y momento flector para ninguna combinación.

 "La comprobación no procede, ya que no hay momento flector.

 "La comprobación no procede, ya que no hay esfuerzo cortante.

 "La comprobación no procede, ya que no hay esfuerzo cortante.

 "La comprobación no procede, ya que no hay flexión esviada para ninguna combinación.

Página 133